日本日本免费一区视频大片,鲁一鲁亚洲无线码影片,欧美日韩蜜桃在线播放,久久亚洲精品视频免

<sub id="hdorw"></sub>

  • <legend id="hdorw"></legend>

    高一數(shù)學的教學計劃

    時間:2024-06-09 22:00:13 教學計劃 我要投稿

    高一數(shù)學的教學計劃

      時間過得真快,總在不經(jīng)意間流逝,又迎來了一個全新的起點,做好計劃,讓自己成為更有競爭力的人吧。想學習擬定計劃卻不知道該請教誰?下面是小編整理的高一數(shù)學的教學計劃,僅供參考,歡迎大家閱讀。

    高一數(shù)學的教學計劃

    高一數(shù)學的教學計劃1

      本節(jié)課的教學內(nèi)容,是指數(shù)函數(shù)的概念、性質及其簡單應用。教學重點是指數(shù)函數(shù)的圖像與性質。

      I這是指數(shù)函數(shù)在本章的位置。

      指數(shù)函數(shù)是學生在學習了函數(shù)的概念、圖象與性質后,學習的第一個新的初等函數(shù)。它是一種新的函數(shù)模型,也是應用研究函數(shù)的一般方法研究函數(shù)的一次實踐。指數(shù)函數(shù)的學習,一方面可以進一步深化對函數(shù)概念的理解,另一方面也為研究對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎。因此,本節(jié)課的學習起著承上啟下的作用,也是學生體驗數(shù)學思想與方法應用的過程。

      指數(shù)函數(shù)模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應用,與我們的日常生活、生產(chǎn)和科學研究有著緊密的聯(lián)系,因此,學習這部分知識還有著一定的現(xiàn)實意義。

      Ⅱ.教學目標設置

      1。學生能從具體實例中概括指數(shù)函數(shù)典型特征,并用數(shù)學符號表示,建構指數(shù)函數(shù)的概念。

      2。學生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質,能夠利用指數(shù)函數(shù)的性質比較兩個冪的大小。

      3。學生運用數(shù)形結合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗研究函數(shù)的一般方法。

      4。在探究活動中,學生通過獨立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習慣,提升自主學習能力。

      Ⅲ.學生學情分析

      授課班級學生為南京師大附中實驗班學生。

      1。學生已有認知基礎

      學生已經(jīng)學習了函數(shù)的概念、圖象與性質,對函數(shù)有了初步的認識。學生已經(jīng)完成了指數(shù)取值范圍的擴充,具備了進行指數(shù)運算的能力。學生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗。學生數(shù)學基礎與思維能力較好,初步養(yǎng)成了獨立思考、合作交流、反思質疑等學習習慣。

      2。達成目標所需要的認知基礎

      學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力。

      3。難點及突破策略

      難點:1。 對研究函數(shù)的一般方法的認識。

      2。 自主選擇底數(shù)不當導致歸納所得結論片面。

      突破策略:

      1。教師引導學生先明確研究的內(nèi)容與方法,從總體上認識研究的目標與手段。

      2。組織匯報交流活動,展現(xiàn)思維過程,相互評價,相互啟發(fā),促進反思。

      3。對猜想進行適當?shù)刈C明或說明,合情推理與演繹推理相結合。

     、簦虒W策略設計

      根據(jù)學生已有學習基礎,為提升學生的學習能力,本節(jié)課的教學,采用自主學習方式。通過教師引領學生經(jīng)歷研究函數(shù)及其性質的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段。

      學生的自主學習,具體落實在三個環(huán)節(jié):

      (1)建構指數(shù)函數(shù)概念時,學生自主舉例,歸納特征,并用符號表示,討論底數(shù)的取值范圍,完善概念。

      (2)探究指數(shù)函數(shù)圖象特征與性質時,學生自選底數(shù),開展自主研究,并通過匯報交流相互提升。

      (3)性質應用階段,學生自主舉例說明指數(shù)函數(shù)性質的應用。

      研究函數(shù)的性質,可以從形和數(shù)兩個方面展開。從圖形直觀和數(shù)量關系兩個方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質,進而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質,并適時應用函數(shù)解析式輔以必要的說明和證明。

      Ⅴ.教學過程設計

      1。創(chuàng)設情境建構概念

      師:我們已經(jīng)學習了函數(shù)的概念、圖象與性質,大家都知道函數(shù)可以刻畫兩個變量之間的關系。你能用函數(shù)的觀點分析下面的例子嗎?

      師:大家知道細胞分裂的規(guī)律嗎?(出示情境問題)

      [情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應的細胞個數(shù)為y,如何描述這兩個變量的關系?

      [情境問題2]某種放射性物質不斷變化為其他物質,每經(jīng)過一年,這種物質剩余的質量是原來的84%。如果經(jīng)過x年,該物質剩余的質量為y,如何描述這兩個變量的關系?

      [師生活動]引導學生分析,找到兩個變量之間的函數(shù)關系,并得到解析式y(tǒng)=2x和y=0。84x。

      師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點?你能再舉幾個例子嗎?

      〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點?能否寫成一般形式?

      [設計意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實際生活的聯(lián)系。引導學生從具體實例中概括典型特征,初步形成指數(shù)函數(shù)的.概念,并用數(shù)學符號表示。初步得到y(tǒng)=ax這個形式后,引導學生關注底數(shù)的取值范圍,完成概念建構。指數(shù)范圍擴充到實數(shù)后,關注x∈R時,y=ax是否始終有意義,因此規(guī)定a>0。a≠1并不是必須的,常函數(shù)在高等數(shù)學里是基本函數(shù),也有重要的意義。為了使指數(shù)函數(shù)與對數(shù)函數(shù)能構成反函數(shù),規(guī)定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規(guī)定a≠1”。

      [師生活動]學生舉例,教師引導學生觀察,其共同特點是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax。

      [教學預設]學生能舉出具體的例子——y=3x,y=0。5x…。如出現(xiàn)y=(-2)x最好,更便于引發(fā)對a的討論,但一般不會出現(xiàn)。進而提出這類函數(shù)一般形式y(tǒng)=ax。

     、觯毯蠓此蓟仡

      一、對于指數(shù)函數(shù)概念的認識

      指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置。底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質。不必糾結于“y=22x是否為指數(shù)函數(shù)”,把重點放在概念的合理性的理解以及體會模型思想。

      二、對于培養(yǎng)學生思維習慣的考慮

      在學生自主探索的過程中,教師應注意培養(yǎng)學生良好的思維習慣。實際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質有預判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調性等性質;觀察并歸納性質,既需要特殊到一般的推理模式,也應養(yǎng)成有序進行觀察和歸納的良好的思維習慣。對所歸納的指數(shù)函數(shù)的性質,應根據(jù)學生已有的知識水平或教學要求進行證明或合理的說明。學生不僅學到了數(shù)學知識,也初步體驗了研究問題的基本方法。

      三、關于設計定位的反思

      本節(jié)課的教學設計,力圖體現(xiàn)因材施教原則。不同的學情下,教師應采用不同的教學策略。如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學生暴露思維過程。

    高一數(shù)學的教學計劃2

      進一步深化教育教學改革,樹立全新的語文教育觀,構建全新而科學的教學目標體系、數(shù)學網(wǎng)特制定高一上學期數(shù)學函數(shù)的基本性質教學計劃模板。

      教材分析

      函數(shù)性質是函數(shù)的固有屬性,是認識函數(shù)的重要手段,而函數(shù)性質可以由函數(shù)圖象直觀的反應出來,因此,函數(shù)各個性質的學習要從特殊的`、已知的圖象入手,抽象出此類函數(shù)的共同特征,并用數(shù)學語言來定義敘述。基于此,本節(jié)的概念課教學要注重引導,注重知識的形成過程,習題課教學以具體技巧、方法作為輔助練習。

      學情分析

      學生對函數(shù)概念重新認識之后,可以結合初中學過的簡單函數(shù)的圖象對函數(shù)性質進行抽象定義。另外,為了方便學生做題及熟悉函數(shù)性質,還需要補充一些函數(shù)圖象的知識,例如平移、二次函數(shù)圖象、含絕對值函數(shù)的圖象、反比例函數(shù)及其變形的函數(shù)圖象?傊,本節(jié)課的教學要從學生認知實際出發(fā),堅持從圖象中來到圖象中去的原則。

      教學建議

      以圖象作為切入點進行概念課教學,引導學生對概念的形成有一個清晰的認識,尤其是概念中的部分關鍵詞要做深入講解,用函數(shù)圖象指導學生做題。

     教學目標

      知識與技能

      (1)能理解函數(shù)單調性、最值、奇偶性的圖形特征

      (2)會用單調性定義證明具體函數(shù)的單調性;會求函數(shù)的最值;會用奇偶性定義判斷函數(shù)奇偶性

      (3)單調性與奇偶性的綜合題

      (4)培養(yǎng)學生觀察、歸納、推理的抽象思維能力

      過程與方法

      (1)從觀察具體函數(shù)的圖像特征入手,結合相應問題引導學生一步步轉化到用數(shù)學語言形式化的建立相關概念

      (2)滲透數(shù)形結合的數(shù)學思想進行習題課教學

      情感、態(tài)度與價值觀

      (1)使學生學會認識事物的一般規(guī)律:從特殊到一般,抽象歸納

      (2)培養(yǎng)學生嚴密的邏輯思維能力,進一步規(guī)范學生用數(shù)學語言、數(shù)學符號進行表達

      課時安排

      (1)概念課:單調性2課時,最值1課時,奇偶性1課時

      (2)習題課:5課時

    高一數(shù)學的教學計劃3

      教學分析

      課本從學生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實數(shù)間的大小關系引入集合間的關系,同時,結合相關內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時,課本注重體現(xiàn)邏輯思考的方法,如類比等.

      值得注意的問題:在集合間的關系教學中,建議重視使用Venn圖,這有助于學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區(qū)分一些容易混淆的關系和符號,例如∈與?的區(qū)別.

      三維目標

      1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關系,提高利用類比發(fā)現(xiàn)新結論的能力.

      2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達集合的關系,加強學生從具體到抽象的思維能力,樹立數(shù)形結合的思想.

      重點難點

      教學重點:理解集合間包含與相等的含義.

      教學難點:理解空集的含義.

      課時安排

      1課時

      教學過程

      導入新課

      思路1.實數(shù)有相等、大小關系,如5=5,5<7 5="">3等等,類比實數(shù)之間的關系,你會想到集合之間有什么關系呢?(讓學生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導學生)

      (2)學生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.

      (3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關于y軸對稱.)

      師:(板書學生交流結果,整理成表格.注意區(qū)分“函數(shù)性質”與“函數(shù)之間的關系”.若有學生試圖說明結論的合理性,可提供機會.)大家認為底數(shù)a>1或0

      [階段小結] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質:

     、俣x域為R.

     、谥涤驗(0, +∞).

      ③圖象過定點(0, 1).

     、芊瞧娣桥己瘮(shù).

     、莓攁>1時,函數(shù)y=ax在(-∞, +∞)上單調遞增;

      當0

     、藓瘮(shù)y=ax與y=()x (a>0且a≠1)圖象關于y軸對稱.

      ⑦指數(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關系:

      x∈(-∞, 0)時,y=ax圖象在y=bx圖象下方;

      x=0時,兩圖象相交;

      x∈(0,+∞)時,y=ax圖象在y=bx圖象上方.

      [意圖分析]通過探究活動,使學生獲得對指數(shù)函數(shù)圖象的直觀認識.學生觀察圖象,是對圖形語言的理解;根據(jù)圖象描述性質,是將圖形語言轉化為符號或文字語言.對函數(shù)的理解,是建立在三種語言相互轉化的基礎上的.在交流匯報過程中,一方面要通過對探究較深入學生的具體研究過程的剖析,總結提升學習方法,優(yōu)化學習策略;另一方面要關注部分探究意識與能力都薄弱的學生的表現(xiàn),鼓勵他們大膽發(fā)言,激勵他們主動參與活動,讓全體學生成為真正的學習主體.自主探究活動能充分激發(fā)學生的相互學習能力,能有效幫助學生突破難點.

      3.新知運用鞏固深化

      (方案一)(分析函數(shù)性質的用途)

      師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質,它們有什么用處呢?

      師:函數(shù)的定義域是函數(shù)的基礎,是運用性質的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對稱性簡化研究.指數(shù)函數(shù)過定點(0, 1),說明可以將常數(shù)1轉化為指數(shù)式,即1=20=30=…那么函數(shù)單調性有什么用呢?

      生:可以求最值,可以比較兩個函數(shù)值的大小.

      師:那你能舉出運用指數(shù)函數(shù)單調性比大小的例子嗎?(提示:既然是運用指數(shù)函數(shù)單調性,那應該有指數(shù)式.)

      生:(舉例并判斷大小.)

      師:你考察了哪個指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)

      師:以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調性,不用計算就可以比較兩個冪的大小.(出示例1)

      (方案二)

      師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質,它們有什么用處呢?

      師:(口述并板書)你能比較32與33的大小嗎?

      生:直接計算比較.

      師:那比較30.2與30.3的大小呢?能不能不計算呢?

      生:利用函數(shù)y=3x的單調性.

      師:能具體說明嗎?(引導學生規(guī)范表達)我們再試一試.

      (出示例1)

      【例1】比較下列各組數(shù)中兩個值的大小:

     、1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

      [設計意圖] 引導學生運用指數(shù)函數(shù)性質.對于 32與33的大小比較,學生更可能計算出冪的值直接比較.變式后,學生可能作差或作商比較,轉化為比較30.1與1的大小,進而運用指數(shù)函數(shù)單調性,也可能直接運用單調性.初步運用新知解決問題,注重題意理解,擴大知識遷移,感悟解題方法,達到對新知鞏固記憶,加深理解.

      [師生活動]學生板演,教師組織學生點評.

      [教學預設] ①②兩題,學生能運用指數(shù)函數(shù)單調性解決.②題學生可能得到錯誤答案,教師可組織相互點評,規(guī)范表達,正確運用性質.③學生可能運用不同方法,應給予充分的時間,并在具體問題解決后引導學生總結一般方法.

      師:(引導學生規(guī)范表達)你考察了哪個指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質?

      師:(對③的引導)你考慮利用哪個函數(shù)?是y=1.5x還是y=0.8x?這兩個函數(shù)有什么關聯(lián)?(引導學生畫出圖象,從形上提示:圖象有什么關聯(lián)?)

      生:它們都過點(0, 1).

      師:也就是說,可以將1轉化為指數(shù)形式,即1=1.50=0.80.那接下來呢?

      生:比較1.50.3,0.81.2和1的大小.

      師:我們找到了一個比大小的中間量.以往我們計算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調性,不用計算就可以比較兩個冪的大小.

      【例2】

     、僖阎3x≥30.5,求實數(shù)x的取值范圍;

     、谝阎0.2x<25,求實數(shù)x的取值范圍.

      [設計意圖]指數(shù)函數(shù)單調性的逆用,同時考查指數(shù)函數(shù)的定義域.

      4.概括知識總結方法

      〖問題4本節(jié)課我們學習了哪些知識?你還學會了哪些方法?

      [設計意圖] 回顧所學內(nèi)容,深化認知.開放式小結,不同學生有不同的收獲.

      [師生活動]學生發(fā)言總結,交流所得.

      [教學預設]

      通過本節(jié)課對指數(shù)函數(shù)圖象和性質的研究,我們獲得了以下知識和方法:

      ①指數(shù)函數(shù)的定義與性質;

     、谘芯亢瘮(shù)的一般方法和步驟.

      師:本節(jié)課我們學習了什么知識?

      生:指數(shù)函數(shù)的定義和性質.

      師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?

      生:先確定研究的內(nèi)容:定義域、值域、單調性、奇偶性和其它性質.

      生:然后從幾個具體的指數(shù)函數(shù)開始,畫出圖象,列出性質,最后得到一般情況.

      師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會運用這樣的方法研究新的函數(shù).

      [意圖分析]課堂總結不是對所學知識的簡單回顧,應讓學生在知識、方法和策略上多層次地整理,促進學生理解所用學習方法的合理性與普遍性,使學生獲得知識與能力的共同進步.

      5.分層作業(yè),因材施教

      (1)感受理解:課本第54頁,習題2.2(2):1,2,3,4;

      (2)思考運用:運用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質嗎?

      [設計意圖]分層布置作業(yè),“感受理解”面向全體學生,旨在掌握指數(shù)函數(shù)的圖象與性質.“思考運用”提供學生運用函數(shù)研究的一般方法自主研究的機會.

     、觯毯蠓此蓟仡

      一、對于指數(shù)函數(shù)概念的認識

      指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質.不必糾結于“y=22x是否為指數(shù)函數(shù)”,把重點放在概念的合理性的理解以及體會模型思想.

      二、對于培養(yǎng)學生思維習慣的考慮

      在學生自主探索的過程中,教師應注意培養(yǎng)學生良好的思維習慣.實際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對指數(shù)函數(shù)的性質有預判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調性等性質;觀察并歸納性質,既需要特殊到一般的推理模式,也應養(yǎng)成有序進行觀察和歸納的良好的思維習慣.對所歸納的指數(shù)函數(shù)的性質,應根據(jù)學生已有的知識水平或教學要求進行證明或合理的說明.學生不僅學到了數(shù)學知識,也初步體驗了研究問題的基本方法.

      三、關于設計定位的反思

      本節(jié)課的教學設計,力圖體現(xiàn)因材施教原則。不同的學情下,教師應采用不同的教學策略.如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學生暴露思維過程.、

    高一數(shù)學的教學計劃11

      平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形 。

      教學目標

      (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.

      (2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.

      (3)掌握直線方程各種形式之間的互化.

      (4)通過直線方程一般式的教學培養(yǎng)學生全面、系統(tǒng)、周密地分析、討論問題的能力.

      (5)通過直線方程特殊式與一般式轉化的教學,培養(yǎng)學生靈活的思維品質和辯證唯物主義觀點.

      (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

      教學建議

      1.教材分析

      (1)知識結構

      由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.

      (2)重點、難點分析

      ①本節(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.

      解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學習用方程討論直線起著直接的`作用,同時也對曲線方程的學習起著重要的作用.

      直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

     、诒竟(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.

      2.教法建議

      (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

      (2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續(xù)學習曲線方程打下基礎.

      直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養(yǎng)學生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學生邏輯思維能力,同時培養(yǎng)學生辯證唯物主義觀點

      (3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

      (4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

      求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.

      (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負實數(shù)).

      (6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養(yǎng)學生的綜合能力.

      (7)直線方程的理論在其他學科和生產(chǎn)生活實際中有大量的應用.教學中注意聯(lián)系實際和其它學科,教師要注意引導,增強學生用數(shù)學的意識和能力.

      (8)本節(jié)不少內(nèi)容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

    高一數(shù)學的教學計劃12

      一、教學內(nèi)容

      高中必修1及必修2的部分教學內(nèi)容。通過教學,要使學生把數(shù)學與實際生活聯(lián)系起來,掌握必須掌握的基礎知識與基本技能,進一步培養(yǎng)學生的數(shù)學創(chuàng)新意識,良好個性品質以及初步的辯證唯物主義的觀點。指導思想

      二、學情及教材分析

      高中教學內(nèi)容深,學生接受起來很困難。所以教師要根據(jù)實際情況,面對全體,因材施教,對學習有障礙的學生進行個別輔導。以優(yōu)待差,發(fā)揮學生群體的作用。抓好三類生的教學,促進尖子生,帶好中等生,扶好下等生。順利完成初高中的銜接教學。

      三、方法措施

      1、本學期我繼續(xù)采取的教學模式是:

      四點------學知識點、抓重點、找疑點、攻難點。

      學知識點-----學會本節(jié)課應該學會的知識點、本單元的知識點、本冊的知識點。熟知應掌握的.概念、法則、定理、公式等。

      抓重點--------抓住本節(jié)課本單元本冊的的重點。并靈活地運用其中的公式定理法則等學以致用,會做相應的習題,特別是重點習題。

      找疑點--------每節(jié)課都讓學生找出自己的疑問、疑點,教師采取相應的措施幫助學生解疑化難。

      攻難點-------對于本節(jié)課,本單元的難點及重點,教師要集中精力對學生加強訓練,引導學生反復練習,形成數(shù)學能力,化解難點。

      2、總結學習方法。針對學生接受知識困難、又非常容易遺忘的特點,在教學中最關鍵的是要總結好學習方法。只有總結好了方法才會學有所獲。

      3、在教學中面向全體學生,因材施教,加強引導,使學生養(yǎng)成良好的學習習慣,注重培養(yǎng)學生興趣和主動性。鼓勵學生大膽創(chuàng)新,勇于探索。培養(yǎng)學生創(chuàng)新能力和創(chuàng)新意識。努力提高學生成績。

      4、照顧全體學生,提高尖子生;帶好中等生;抓住后進生。以優(yōu)帶差,共同提高。不傷害學生的自尊心。讓學生快樂地學習。

      5、教師千方百計想出最直觀的教學方法,把課程講明白,直到學生弄明白為止。多使用直觀簡捷的教學方法,注重興趣教學。

      6、根據(jù)學生容易遺忘的特點,要及時有效地搞好復習。課前提問抓住重點,每周的自習課搞好一周的復習鞏固,做好每個單元的訓練。

      7、教師一定要有耐心、信心,相信學生會學好的。

    高一數(shù)學的教學計劃13

      本學期擔任高一(9)(10)兩班的數(shù)學教學工作,兩班學生共有120人,初中的基礎參差不齊,但兩個班的學生整體水平不高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。

      一、指導思想:

      使學生在九年義務教育數(shù)學課程的基礎上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。

      1.獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質,了解概念、結論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。

      2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

      3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。

      4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。

      5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。

      6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的'理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

      二、教學目標:

      (一)情意目標

      (1)通過分析問題的方法的教學,培養(yǎng)學生的學習的興趣。

      (2)提供生活背景,通過數(shù)學建模,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質,體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組 研究合作學習中學會交流、相互評價,提高學生的合作意識

      (4)基于情意目標,調控教學流程,堅定學習信念和學習信心。

      (5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。

      (6)讓學生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學發(fā)現(xiàn)歷程法。

      (二)能力要求 培養(yǎng)學生記憶能力。

      (1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養(yǎng)對數(shù)學本質問題的背景事實及具體數(shù)據(jù)的記憶。

      (3)通過揭示立體集合、函數(shù)、數(shù)列有關概念、公式和圖形的對應關系,培養(yǎng)記憶能力。

      2、培養(yǎng)學生的運算能力。

      (1)通過概率的訓練,培養(yǎng)學生的運算能力。

      (2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。

      (3)通過函數(shù)、數(shù)列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

      (4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

      (5)利用數(shù)形結合,另辟蹊徑,提高學生運算能力。

    高一數(shù)學的教學計劃14

      一、指導思想:

      (1)隨著素質教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設服務,必須與生產(chǎn)勞動相結合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現(xiàn)代化建設和進一步學習現(xiàn)代化科學技術所需要的數(shù)學知識和基本技能。

      (2)培養(yǎng)學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數(shù)學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。

      (3)根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神。

      (4)使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

      (5)學會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。

      (6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養(yǎng),又要滲透有關高考的思想方法,為三年的學習做好準備。

      二、學生狀況分析

      本學期擔任高一(1)班和(5)班的數(shù)學教學工作,學生共有111人,其中(1)班學生是名校直通班,學生思維活躍,(5)班是火箭班,學生基本素質不錯,一些基本知識掌握不是很好,學習積極性需要教師提高,成績以中等為主,中上不多。兩個班中,從軍訓一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。

      三、教材簡析

      使用人教版《普通高中課程標準實驗教科書數(shù)學(A版)》,教材在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關系,體現(xiàn)基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。

      必修1,主要涉及兩章內(nèi)容:

      第一章集合

      通過本章學習,使學生感受到用集合表示數(shù)學內(nèi)容時的簡潔性、準確性,幫助學生學會用集合語言表示數(shù)學對象,為以后的學習奠定基礎。

      1.了解集合的含義,體會元素與集合的屬于關系,并初步掌握集合的表示方法;

      2.理解集合間的包含與相等關系,能識別給定集合的子集,了解全集與空集的含義;

      3.理解補集的含義,會求在給定集合中某個集合的補集;

      4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;

      5.滲透數(shù)形結合、分類討論等數(shù)學思想方法;

      6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關系等數(shù)學知識的過程中,培養(yǎng)學生的思維能力。

      第二章函數(shù)的概念與基本初等函數(shù)Ⅰ

      教學本章時應立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學活動—意義建構—數(shù)學理論—數(shù)學應用—回顧反思”的順序結構,引導學生通過實驗、觀察、歸納、抽象、概括,數(shù)學地提出、分析和解決問題。通過本章學習,使學生進一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學會用函數(shù)的思想、變化的觀點分析和解決問題,達到培養(yǎng)學生的創(chuàng)新思維的目的。

      1.了解函數(shù)概念產(chǎn)生的背景,學習和掌握函數(shù)的概念和性質,能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;

      2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運算性質;掌握指數(shù)函數(shù)的概念、圖象和性質;理解對數(shù)的概念,掌握對數(shù)的運算性質,掌握對數(shù)函數(shù)的概念、圖象和性質;了解冪函數(shù)的概念和性質,知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學模型;

      3.了解函數(shù)與方程之間的關系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;

      4.培養(yǎng)學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學建模能力以及數(shù)學交流的能力。

      必修4,主要涉及三章內(nèi)容:

      第一章三角函數(shù)

      通過本章學習,有助于學生認識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應用,從中感受數(shù)學的價值,學會用數(shù)學的'思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學科學習中的問題,發(fā)展數(shù)學應用意識。

      1.了解任意角的概念和弧度制;

      2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關系及誘導公式;

      3.了解三角函數(shù)的周期性;

      4.掌握三角函數(shù)的圖像與性質。

      第二章平面向量

      在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。

      1.理解平面向量的概念及其表示;

      2.掌握平面向量的加法、減法和向量數(shù)乘的運算;

      3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;

      4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關角度和垂直的問題。

      第三章三角恒等變換

      通過推導兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學生在經(jīng)歷和參與數(shù)學發(fā)現(xiàn)活動的基礎上,體會向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。

      1.掌握兩角和與差的余弦、正弦、正切公式;

      2.掌握二倍角的正弦、余弦、正切公式;

      3.能正確運用三角公式進行簡單的三角函數(shù)式的化簡、求值和恒等式證明。

      四、教學任務

      本期授課內(nèi)容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。

      五、教學質量目標

      1.獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質,體會數(shù)學思想和方法。

      2.提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

      3.提高學生提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。

      4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。

      5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。

      6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

      六、促進目標達成的重點工作及措施

      重點工作:

      認真貫徹高中數(shù)學新課標精神,樹立新的教學理念,以“雙基”教學為主要內(nèi)容,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數(shù)學能力都得到提高和發(fā)展。

      分層推進措施

      1、重視學生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學生,增強學生學習數(shù)學興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

      2、合理引入課題,由數(shù)學活動、故事、提問、師生交流等方式激發(fā)學生學習興趣,注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。

      3、培養(yǎng)能力是數(shù)學教學的落腳點。能力是在獲得和運用知識的過程中逐步培養(yǎng)起來的。

      在銜接教學中,首先要加強基本概念和基本規(guī)律的教學。

      加強培養(yǎng)學生的邏輯思維能力和解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。

      4、講清講透數(shù)學概念和規(guī)律,使學生掌握完整的基礎知識,培養(yǎng)學生數(shù)學思維能力,抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

      5、自始至終貫徹教學四環(huán)節(jié)(引入、探究、例析、反饋),針對不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學方法,把學生被動接受知識轉化主動學習知識。

      6、重視數(shù)學應用意識及應用能力的培養(yǎng)。

      7、加強學生良好學習習慣的培養(yǎng)

      七、教學時間大致安排

      集合與函數(shù)概念13課時

      基本初等函數(shù)15課時

      函數(shù)的應用8課時

      三角函數(shù)24課時

      平面向量14課時

      三角恒等變換9課時

    高一數(shù)學的教學計劃15

      一、基本情況

      高一計算機1323班共有學生55人,其中男生42人,女生13人。高一新生剛進入高中,學習環(huán)境新,好奇心強.但是普遍學習習慣不好,數(shù)學基礎較差,學習興趣不濃.所以工作的重心在于提高學生對數(shù)學科的興趣,以及在補足初中知識漏洞的前提下,進一步的夯實學生基礎.

      二、指導思想

      全面提高學生的科學文化素養(yǎng),圍著課堂教學這個中心,更新教育觀念,進一步提高教學水平,培養(yǎng)學生分析問題解決問題的能力,同時扎扎實實抓好基礎知識,注意學生習慣的培養(yǎng),為三年后高考打下堅實的基礎。

      三、工作任務和措施

      任務:基礎模塊第一章至第四章

      第一章集合(9月份

      第二章不等式(10月份

      第三章函數(shù)(11月份

      第四章指數(shù)函數(shù)與對數(shù)函數(shù)(12月份-1月份

      措施:

      1.夯實三基

      知識、技能和能力三者關系是互相依存、互相促進的整體,能力是在知識的教學和技能的培訓中形成的,通過數(shù)學思想的形成和數(shù)學方法的掌握,能力才得到培養(yǎng)和發(fā)展,同時,能力的提高又會對知識的理解和掌握起促進作用。因此,在教學中應注意:

      A.教學面向全體學生。

      B.重視概念的歸納、規(guī)律的總結、技能的訓練。

      C.重視知識的產(chǎn)生、發(fā)展過程。

      D.加強知識過關檢測,做好查漏補缺工作。

      2.優(yōu)化課堂教學結構

      A.精心設計課堂教學:

      B.課堂練習典型化;

      C.教學語言精練化

      D.板書規(guī)范化。

      3.加強學習方法指導:

      A.指導學生看書,培養(yǎng)學生主動學習的習慣。

      B.指導學生整理知識,總結解題規(guī)律,歸納典型例題解法及一題多解與多題一解。

      4.加強學風建設與學習習慣的培養(yǎng)。

      適當安排作業(yè),認真檢查督促,加強優(yōu)生和后進生的輔導,對學生的作業(yè)盡量做到面批。

      四、各章節(jié)授課具體時間安排:

      (基礎模塊第一章集合(約12課時

      (1理解集合、元素及其關系,掌握集合的表示法。

      (2掌握集合之間的關系(子集、真子集、相等。

      (3理解集合的運算(交、并、補。

      (4了解充要條件。

      (基礎模塊第二章不等式(約12課時

      (1理解不等式的基本性質。

      (2掌握區(qū)間的'概念。高一上數(shù)學教學計劃高一上數(shù)學教學計劃。

      (3掌握一元二次不等式的解法。

      基礎模塊)第三章函數(shù)(約20課時

      (1理解函數(shù)的概念和函數(shù)的三種表示法。

      (2理解函數(shù)的單調性與奇偶性。

      (3能運用函數(shù)的知識解決有關實際問題。

      (基礎模塊第四章指數(shù)函數(shù)與對數(shù)函數(shù)(約20課時

      (1理解有理指數(shù)冪,掌握實數(shù)指數(shù)冪及其運算法則,掌握利用計算器進行冪的計算方法。

      (2了解冪函數(shù)的概念及其簡單性質。

      (3理解指數(shù)函數(shù)的概念、圖像及性質。

      (4理解對數(shù)的概念(含常用對數(shù)、自然對數(shù)及積、商、冪的對數(shù),掌握利用計算器求對數(shù)值的方法。

      (5理解對數(shù)函數(shù)的概念、圖像及性質。

      (6能運用指數(shù)函數(shù)與對數(shù)函數(shù)的知識解決有關實際問題。

    【高一數(shù)學的教學計劃】相關文章:

    高一數(shù)學教學計劃【薦】12-28

    高一數(shù)學教學計劃(精選15篇)12-24

    中職高一數(shù)學教學計劃12-28

    高一數(shù)學教學計劃(15篇)01-24

    高一數(shù)學教學計劃15篇12-18

    高一數(shù)學教學計劃精選15篇12-23

    高一數(shù)學教學計劃集錦15篇12-23

    高一數(shù)學教學計劃(集合15篇)12-26

    高一數(shù)學教學計劃(通用15篇)12-24