日本日本免费一区视频大片,鲁一鲁亚洲无线码影片,欧美日韩蜜桃在线播放,久久亚洲精品视频免

<sub id="hdorw"></sub>

  • <legend id="hdorw"></legend>

    高一數(shù)學(xué)教學(xué)計(jì)劃

    時(shí)間:2024-10-10 11:55:22 教學(xué)計(jì)劃 我要投稿

    高一數(shù)學(xué)教學(xué)計(jì)劃(精選15篇)

      時(shí)間就如同白駒過隙般的流逝,我們的工作又邁入新的階段,為此需要好好地寫一份計(jì)劃了。計(jì)劃到底怎么擬定才合適呢?下面是小編精心整理的高一數(shù)學(xué)教學(xué)計(jì)劃,供大家參考借鑒,希望可以幫助到有需要的朋友。

    高一數(shù)學(xué)教學(xué)計(jì)劃(精選15篇)

    高一數(shù)學(xué)教學(xué)計(jì)劃1

      為了做好這學(xué)期的數(shù)學(xué)教學(xué)工作,結(jié)合學(xué)校二輪課改要求和“十六字方針”特作計(jì)劃如下:

      一、工作目標(biāo):

      高一下學(xué)期的工作是第二冊(cè)課本教學(xué)任務(wù);

      二、教法分析:

      1.選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。

      2。積極探索改革教學(xué),把新課程標(biāo)準(zhǔn)的'新思想、新理念和數(shù)學(xué)課堂教學(xué)的新思路、新設(shè)想結(jié)合起來,轉(zhuǎn)變思想,積極探索,改革教學(xué)。愛因斯曾經(jīng)說過:“興趣是最好的老師!奔ぐl(fā)學(xué)生的學(xué)習(xí)興趣,是數(shù)學(xué)教學(xué)過程中提高質(zhì)量的重要手段之一。

      3.通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。

      4.在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

      三、教學(xué)措施:

      1.轉(zhuǎn)變教師的教學(xué)方式轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式

      教師要以新理念指導(dǎo)自己的教學(xué)工作,牢固樹立學(xué)生是學(xué)習(xí)的主人,以平等、寬容的態(tài)度對(duì)待學(xué)生,在溝通和"對(duì)話"中實(shí)現(xiàn)師生的共同發(fā)展,努力建立互動(dòng)的師生關(guān)系。本學(xué)期要繼續(xù)以改變學(xué)生的學(xué)習(xí)方式為主,提倡探究性學(xué)習(xí)、參與性學(xué)習(xí)和實(shí)踐性學(xué)習(xí)。

      2.發(fā)揮備課組的集體作用

      集體備課,教案要求統(tǒng)一。每次備課都有一個(gè)主題,然后集體討論,補(bǔ)充完善。同時(shí),根據(jù)各班的具體情況,適當(dāng)進(jìn)行調(diào)整,以適應(yīng)學(xué)生的實(shí)際情況為標(biāo)準(zhǔn),讓學(xué)生學(xué)會(huì)并且掌握,不搞教條主義和形式主義。教案應(yīng)體現(xiàn)知識(shí)體系、思維方法、訓(xùn)練應(yīng)用,以及滲透運(yùn)用等,要對(duì)重點(diǎn)、難點(diǎn)有分析和解決方法。

      3.詳細(xì)計(jì)劃,保證練習(xí)質(zhì)量

      教學(xué)中用配備資料《創(chuàng)新設(shè)計(jì)》,要求學(xué)生按教學(xué)進(jìn)度完成相應(yīng)的習(xí)題,教師要提前向?qū)W生指出不做的題,以免影響學(xué)生的時(shí)間,每周的一份周測練習(xí)試卷,存在的普遍性問題要及時(shí)安排時(shí)間講評(píng)。

      4.加強(qiáng)輔導(dǎo)工作

      對(duì)已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的個(gè)別輔導(dǎo)十分重要。教師教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對(duì)性地進(jìn)行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的學(xué)困學(xué)生。

    高一數(shù)學(xué)教學(xué)計(jì)劃2

      一、學(xué)生情景分析

      本學(xué)期擔(dān)任高一森林班的數(shù)學(xué)教學(xué)工作,學(xué)生共有66人,大部分學(xué)生學(xué)習(xí)習(xí)慣好,學(xué)習(xí)目標(biāo)明確、勤奮、主動(dòng),學(xué)習(xí)動(dòng)力足,少數(shù)同學(xué)質(zhì)疑“學(xué)習(xí)是否有用”;另外,少數(shù)學(xué)生不能正確評(píng)價(jià)自我,這給教學(xué)工作帶來了必須的難度,在學(xué)習(xí)中取得長足的提高,必須要引導(dǎo)他們,擺正學(xué)習(xí)態(tài)度,讓他們體會(huì)到學(xué)習(xí)的樂趣,學(xué)習(xí)給他們帶來的成就感,提高他們學(xué)習(xí)的進(jìn)取性,還要不斷的鼓勵(lì)他們,培養(yǎng)他們良好的學(xué)習(xí)習(xí)慣。

      二、教學(xué)目標(biāo)

      1、由數(shù)學(xué)活動(dòng)、故事等等,經(jīng)過分析問題的方法的教學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

      2、注意從實(shí)例出發(fā),從感性提高到理性,供給生活背景,經(jīng)過動(dòng)手建立幾何模型,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。

      3、獲得必要的.數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。經(jīng)過不一樣形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

      4、提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。

      5、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的本事。

      6、經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對(duì)數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。

      7、加強(qiáng)知識(shí)的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的本事。

      8、具有必須的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

      三、教材分析

      本學(xué)期學(xué)習(xí)的資料主要有集合,函數(shù)和空間幾何體,這些都是高中數(shù)學(xué)的基礎(chǔ)知識(shí),其中函數(shù)更是高中數(shù)學(xué)的學(xué)習(xí)重點(diǎn),也是學(xué)習(xí)其他資料的必備基礎(chǔ),空間幾何是高考中不可忽略的重要部分,在教學(xué)上要注重學(xué)生的邏輯思維本事、空間想象本事的培養(yǎng)及自學(xué)本事的逐步構(gòu)成。

      四、教學(xué)措施

      1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和提高。

      2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

      3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事就解決實(shí)際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

      4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

      5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不一樣的教材資料選擇不一樣教法。

      6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用本事的培養(yǎng)。

    高一數(shù)學(xué)教學(xué)計(jì)劃3

      一、指導(dǎo)思想

      1、獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

      2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

      3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的.能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。

      4、發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

      5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

      6、具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)。

      二、學(xué)情分析及學(xué)生情況分析

      高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對(duì)新高考我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。

      三、具體措施

     。1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。

     。2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)、所列基礎(chǔ)知識(shí)依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,能力要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。、

     。3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對(duì)所學(xué)知識(shí)進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。

     。4)讓學(xué)生通過單元考試,檢測自己的實(shí)際應(yīng)用能力,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備

      (5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。

     。6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。

    高一數(shù)學(xué)教學(xué)計(jì)劃4

      教學(xué)目標(biāo) :

      (1)理解子集、真子集、補(bǔ)集、兩個(gè)集合相等概念;

      (2)了解全集、空集的意義,

      (3)掌握有關(guān)的符號(hào)及表示方法,會(huì)用它們正確表示一些簡單的集合,培養(yǎng)學(xué)生的符號(hào)表示的能力;

      (4)會(huì)求已知集合的子集、真子集,會(huì)求全集中子集在全集中的補(bǔ)集;

      (5)能判斷兩集合間的包含、相等關(guān)系,并會(huì)用符號(hào)及圖形(文氏圖)準(zhǔn)確地表示出來,培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;

      (6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問題、解決問題的能力.

      教學(xué)重點(diǎn):子集、補(bǔ)集的概念

      教學(xué)難點(diǎn) :弄清元素與子集、屬于與包含之間的區(qū)別

      教學(xué)用具:幻燈機(jī)

      教學(xué)過程 設(shè)計(jì)

      (一)導(dǎo)入 新課

      上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識(shí).

      【提出問題】(投影打出)

      已知 , , ,問:

      1.哪些集合表示方法是列舉法.

      2.哪些集合表示方法是描述法.

      3.將集M、集從集P用圖示法表示.

      4.分別說出各集合中的元素.

      5.將每個(gè)集合中的`元素與該集合的關(guān)系用符號(hào)表示出來.將集N中元素3與集M的關(guān)系用符號(hào)表示出來.

      6.集M中元素與集N有何關(guān)系.集M中元素與集P有何關(guān)系.

      【找學(xué)生回答】

      1.集合M和集合N;(口答)

      2.集合P;(口答)

      3.(筆練結(jié)合板演)

      4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

      5. , , , , , , , (筆練結(jié)合板演)

      6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

      【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習(xí)中會(huì)經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個(gè)集合間關(guān)系的問題.

      (二)新授知識(shí)

      1.子集

      (1)子集定義:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

      記作: 讀作:A包含于B或B包含A

      當(dāng)集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:A B或B A.

      性質(zhì):① (任何一個(gè)集合是它本身的子集)

     、 (空集是任何集合的子集)

      【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

      【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.

      因?yàn)锽的子集也包括它本身,而這個(gè)子集是由B的全體元素組成的.空集也是B的子集,而這個(gè)集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.

      (2)集合相等:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

      例: ,可見,集合 ,是指A、B的所有元素完全相同.

      (3)真子集:對(duì)于兩個(gè)集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。

      【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個(gè)元素不屬于A,那么集合A叫做集合B的真子集.”

      集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內(nèi)部分別表示集合A,B.

      【提問】

      (1) 寫出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

      (2) 判斷下列寫法是否正確

     、 A ② A ③ ④A A

      性質(zhì):

      (1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;

      (2)如果 , ,則 .

      例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.

      解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

      【注意】(1)子集與真子集符號(hào)的方向。

      (2)易混符號(hào)

     、佟 ”與“ ”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如 R,{1} {1,2,3}

     、趝0}與 :{0}是含有一個(gè)元素0的集合, 是不含任何元素的集合。

      如: {0}。不能寫成 ={0}, ∈{0}

      例2 見教材P8(解略)

      例3 判斷下列說法是否正確,如果不正確,請(qǐng)加以改正.

      (1) 表示空集;

      (2)空集是任何集合的真子集;

      (3) 不是 ;

      (4) 的所有子集是 ;

      (5)如果 且 ,那么B必是A的真子集;

      (6) 與 不能同時(shí)成立.

      解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;

      (2)不正確.空集是任何非空集合的真子集;

      (3)不正確. 與 表示同一集合;

      (4)不正確. 的所有子集是 ;

      (5)正確

      (6)不正確.當(dāng) 時(shí), 與 能同時(shí)成立.

      例4 用適當(dāng)?shù)姆?hào)( , )填空:

      (1) ; ; ;

      (2) ; ;

      (3) ;

      (4)設(shè) , , ,則A B C.

      解:(1)0 0 ;

      (2) = , ;

      (3) , ∴ ;

      (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.

      【練習(xí)】教材P9

      用適當(dāng)?shù)姆?hào)( , )填空:

      (1) ; (5) ;

      (2) ; (6) ;

      (3) ; (7) ;

      (4) ; (8) .

      解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

      提問:見教材P9例子

      (二) 全集與補(bǔ)集

      1.補(bǔ)集:一般地,設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作 ,即

      .

      A在S中的補(bǔ)集 可用右圖中陰影部分表示.

      性質(zhì): S( SA)=A

      如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};

      (2)若A={0},則 NA=N*;

      (3) RQ是無理數(shù)集。

      2.全集:

      如果集合S中含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集,全集通常用表示.

      注: 是對(duì)于給定的全集 而言的,當(dāng)全集不同時(shí),補(bǔ)集也會(huì)不同.

      例如:若 ,當(dāng) 時(shí), ;當(dāng) 時(shí),則 .

      例5 設(shè)全集 , , ,判斷 與 之間的關(guān)系.

    高一數(shù)學(xué)教學(xué)計(jì)劃5

      一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點(diǎn))

      必修5第一章:解三角形;重點(diǎn)是正弦定理與余弦定理;難點(diǎn)是正弦定理與余弦定理的應(yīng)用;

      第二章:數(shù)列;重點(diǎn)是等差數(shù)列與等比數(shù)列的前n項(xiàng)的和;難點(diǎn)是等差數(shù)列與等比數(shù)列前n項(xiàng)的和與應(yīng)用;

      第三章:不等式;重點(diǎn)是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式;難點(diǎn)是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用;

      必修2第一章:空間幾何體;重點(diǎn)是空間幾何體的三視圖和直觀圖及表面積與體積;難點(diǎn)是空間幾何體的三視圖;

      第二章:點(diǎn)、直線、平面之間的位置關(guān)系;重點(diǎn)與難點(diǎn)都是直線與平面平行及垂直的判定及其性質(zhì);

      第三章:直線與方程;重點(diǎn)是直線的傾斜角與斜率及直線方程;難點(diǎn)是如何選擇恰當(dāng)?shù)闹本方程求解題目;

      第四章:圓與方程;重點(diǎn)是圓的方程及直線與圓的位置關(guān)系;難點(diǎn)是直線與圓的位置關(guān)系;

      二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)

      較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識(shí)水平與基本學(xué)習(xí)方法比較扎實(shí),大部分的學(xué)生對(duì)學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。

      三、教學(xué)目的要求

      1.通過對(duì)任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計(jì)算有關(guān)的實(shí)際問題。

      2.通過日常生活中的實(shí)例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式,能用有關(guān)的知識(shí)解決相應(yīng)的問題。

      3.理解不等式(組)對(duì)于刻畫不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。

      4.幾何學(xué)研究現(xiàn)實(shí)世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計(jì)算是認(rèn)識(shí)和探索幾何圖形及其性質(zhì)的方法。先從對(duì)空間幾何體的整體觀察入手,認(rèn)識(shí)空間圖形及其直觀圖的.畫法;再以長方體為載體,直觀認(rèn)識(shí)和理解空間中點(diǎn)、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對(duì)某些結(jié)論進(jìn)行論證。另外了解一些簡單幾何體的表面積與體積的計(jì)算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會(huì)數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。

      四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施

      積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時(shí)對(duì)學(xué)生的思想進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。

    高一數(shù)學(xué)教學(xué)計(jì)劃6

      一、教材依據(jù)

      本節(jié)課是北師大版數(shù)學(xué)(必修2)第二章《解析幾何初步》第一節(jié)《1.2直線的方程》第一部分《直線方程的點(diǎn)斜式》內(nèi)容。

      二、教材分析

      直線方程的點(diǎn)斜式給出了根據(jù)已知一個(gè)點(diǎn)和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點(diǎn)斜式是基本的,直線方程的斜截式

      、兩點(diǎn)式都是由點(diǎn)斜式推出的。從初中代數(shù)中的.一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題求直線方程問題。在引入,過程中要讓學(xué)生弄清

      直線與方程的一一對(duì)應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。

      在推導(dǎo)直線方程的點(diǎn)斜式時(shí),根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。

      三、教學(xué)目標(biāo)

      知識(shí)與技能:

     。1)理解直線方程的點(diǎn)斜式、斜截式的形式特點(diǎn)和適用范圍;

      (2)能正確利用直線的點(diǎn)斜式、斜截式公式求直線方程。

     。3)體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系。

      過程與方法:在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素直線上的一點(diǎn)和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點(diǎn)斜式方程;學(xué)生

      通過對(duì)比理解截距與距離的區(qū)別。

      情態(tài)與價(jià)值觀:通過讓學(xué)生體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系,進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化

      等觀點(diǎn),使學(xué)生能用聯(lián)系的觀點(diǎn)看問題。

      四、教學(xué)重點(diǎn)

      重點(diǎn):直線的點(diǎn)斜式方程和斜截式方程。

      五、教學(xué)難點(diǎn)

      難點(diǎn):直線的點(diǎn)斜式方程和斜截式方程的應(yīng)用。

      要點(diǎn):運(yùn)用數(shù)形結(jié)合的思想方法,幫助學(xué)生分析描述幾何圖形。

      六、教學(xué)準(zhǔn)備

      1.教學(xué)方法的選擇:啟發(fā)、引導(dǎo)、討論.

      創(chuàng)設(shè)問題情境,采用啟發(fā)誘導(dǎo)式的教學(xué)模式引導(dǎo)學(xué)生探索討論,學(xué)生主動(dòng)參與提出問題、探索問題和解決問題的過程,突出以學(xué)生為主體的探究性

      學(xué)習(xí)活動(dòng)。

      2.通過讓學(xué)生觀察、討論、辨析、畫圖,親身實(shí)踐,調(diào)動(dòng)多感官去體驗(yàn)數(shù)學(xué)建模的思想;學(xué)生要學(xué)會(huì)用數(shù)形結(jié)合的方法建立起代數(shù)問題與幾何問題

      間的密切聯(lián)系。為使學(xué)生積極參與課堂學(xué)習(xí),我主要指導(dǎo)了以下的學(xué)習(xí)方法:

     、.讓學(xué)生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評(píng)析解題對(duì)錯(cuò),從而提高學(xué)生的參與意識(shí)和數(shù)學(xué)表達(dá)能力。

     、.分組討論。

    高一數(shù)學(xué)教學(xué)計(jì)劃7

    、

     、瘢虒W(xué)內(nèi)容解析

      本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用.教學(xué)重點(diǎn)是指數(shù)函數(shù)的圖像與性質(zhì).

      這是指數(shù)函數(shù)在本章的位置.

      指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個(gè)新的初等函數(shù).它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實(shí)踐.指數(shù)函數(shù)的學(xué)習(xí),一方面可以進(jìn)一步深化對(duì)函數(shù)概念的理解,另一方面也為研究對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ).因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗(yàn)數(shù)學(xué)思想與方法應(yīng)用的過程.

      指數(shù)函數(shù)模型在貸款利率的計(jì)算以及考古中年代的測算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識(shí)還有著一定的現(xiàn)實(shí)意義.

     、颍虒W(xué)目標(biāo)設(shè)置

      1.學(xué)生能從具體實(shí)例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號(hào)表示,建構(gòu)指數(shù)函數(shù)的概念.

      2.學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個(gè)冪的大小.

      3.學(xué)生運(yùn)用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗(yàn)研究函數(shù)的一般方法.

      4.在探究活動(dòng)中,學(xué)生通過獨(dú)立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力.

      Ⅲ.學(xué)生學(xué)情分析

      授課班級(jí)學(xué)生為南京師大附中實(shí)驗(yàn)班學(xué)生.

      1.學(xué)生已有認(rèn)知基礎(chǔ)

      學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對(duì)函數(shù)有了初步的認(rèn)識(shí).學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴(kuò)充,具備了進(jìn)行指數(shù)運(yùn)算的能力.學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗(yàn).學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨(dú)立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣.

      2.達(dá)成目標(biāo)所需要的認(rèn)知基礎(chǔ)

      學(xué)生需要對(duì)研究的目標(biāo)、方法和途徑有初步的認(rèn)識(shí),需要具備較好的歸納、猜想和推理能力.

      3.難點(diǎn)及突破策略

      難點(diǎn):1. 對(duì)研究函數(shù)的一般方法的認(rèn)識(shí).

      2. 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面.

      突破策略:

      1.教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認(rèn)識(shí)研究的目標(biāo)與手段.

      2.組織匯報(bào)交流活動(dòng),展現(xiàn)思維過程,相互評(píng)價(jià),相互啟發(fā),促進(jìn)反思.

      3.對(duì)猜想進(jìn)行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合.

     、簦虒W(xué)策略設(shè)計(jì)

      根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式.通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認(rèn)識(shí)研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段.

      學(xué)生的自主學(xué)習(xí),具體落實(shí)在三個(gè)環(huán)節(jié):

      (1)建構(gòu)指數(shù)函數(shù)概念時(shí),學(xué)生自主舉例,歸納特征,并用符號(hào)表示,討論底數(shù)的取值范圍,完善概念.

      (2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時(shí),學(xué)生自選底數(shù),開展自主研究,并通過匯報(bào)交流相互提升.

      (3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用.

      研究函數(shù)的性質(zhì),可以從形和數(shù)兩個(gè)方面展開.從圖形直觀和數(shù)量關(guān)系兩個(gè)方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進(jìn)而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時(shí)應(yīng)用函數(shù)解析式輔以必要的說明和證明.

     、酰虒W(xué)過程設(shè)計(jì)

      1.創(chuàng)設(shè)情境建構(gòu)概念

      師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個(gè)變量之間的關(guān)系.你能用函數(shù)的觀點(diǎn)分析下面的例子嗎?

      師:大家知道細(xì)胞分裂的規(guī)律嗎?(出示情境問題)

      [情境問題1]某細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),……如果細(xì)胞分裂x次,相應(yīng)的細(xì)胞個(gè)數(shù)為y,如何描述這兩個(gè)變量的關(guān)系?

      [情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%.如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個(gè)變量的關(guān)系?

      [師生活動(dòng)]引導(dǎo)學(xué)生分析,找到兩個(gè)變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0.84x.

      師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點(diǎn)?你能再舉幾個(gè)例子嗎?

      〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點(diǎn)?能否寫成一般形式?

      [設(shè)計(jì)意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實(shí)際生活的聯(lián)系.引導(dǎo)學(xué)生從具體實(shí)例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號(hào)表示.初步得到y(tǒng)=ax這個(gè)形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu).指數(shù)范圍擴(kuò)充到實(shí)數(shù)后,關(guān)注x∈R時(shí),y=ax是否始終有意義,因此規(guī)定a>0.a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義.為了使指數(shù)函數(shù)與對(duì)數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1.此處不需對(duì)此解釋,只要補(bǔ)充說“1的任何次方總是1,所以通常還規(guī)定a≠1”.

      [師生活動(dòng)]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點(diǎn)是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax.

      [教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0.5x….如出現(xiàn)y=(-2)x最好,更便于引發(fā)對(duì)a的討論,但一般不會(huì)出現(xiàn).進(jìn)而提出這類函數(shù)一般形式y(tǒng)=ax.

      方案1:

      生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

      師:板書學(xué)生舉例(稍停頓),能舉一個(gè)不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

      生:函數(shù)y=0.5x,y= x,y=(-2)x,y=1x…

      師:板書學(xué)生舉例(停頓),好像有不同意見.

      生:底數(shù)不能取負(fù)數(shù).

      師:為什么?

      生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.

      師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,我們希望這些函數(shù)的定義域就是R.

      (若沒有學(xué)生注意到底數(shù)的取值范圍,可引導(dǎo)學(xué)生關(guān)注例舉函數(shù)的定義域.若有同學(xué)提出情境中函數(shù)的定義域應(yīng)為N+,師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,函數(shù)y=2x和y=0.84x中,能否將定義域擴(kuò)充為R?你們所舉的例子中,定義域是否為R?)

      師:這些函數(shù)有什么共同特點(diǎn)?

      生:都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.

      (若有學(xué)生舉出類似y=max的例子,引導(dǎo)學(xué)生觀察,它依然具有自變量在指數(shù)位置的特征.而刻畫這一特點(diǎn)的最簡單形式就是y=ax,從而初步建立函數(shù)模型y=ax,初步體會(huì)基本初等函數(shù)的作用.)

      師:具備上述特征的函數(shù)能否寫成一般形式?

      生:可以寫成y=ax(a>0).

      師:當(dāng)a=1時(shí),函數(shù)就是常數(shù)函數(shù)y=1.對(duì)于這個(gè)函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個(gè)新函數(shù).(出示指數(shù)函數(shù)定義)

      方案2:

      生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

      師:板書學(xué)生舉例(稍停頓),能舉一個(gè)不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

      生:函數(shù)y=0.5x,y= x,…

      師:這些函數(shù)的自變量是什么?它們有什么共同特點(diǎn)?

      生:(可用文字語言或符號(hào)語言概括)都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.可以寫成y=ax.

      師:y=ax中,自變量是x,底數(shù)a是常數(shù).以上例子的不同之處,是底數(shù)不同.那你覺得底數(shù)的取值范圍是什么呢?

      生:底數(shù)不能取負(fù)數(shù).

      師:為什么?

      生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.

      師:為了研究的方便,我們要求底數(shù)a>0.當(dāng)a=1時(shí),函數(shù)就是常數(shù)函數(shù)y=1.對(duì)于這個(gè)函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個(gè)新函數(shù).(出示指數(shù)函數(shù)定義)

      [階段小結(jié)]一般地,函數(shù)y=ax(a>0且a≠1)稱為指數(shù)函數(shù).它的定義域是R.

      [意圖分析]概念教學(xué)應(yīng)當(dāng)讓學(xué)生感受形成過程,了解知識(shí)的來龍去脈,那種直接拋出定義后輔以“三項(xiàng)注意”的'做法剝奪了學(xué)生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數(shù)函數(shù)等細(xì)枝末節(jié).指數(shù)函數(shù)的基本特征是自變量出現(xiàn)在指數(shù)上,應(yīng)促使學(xué)生對(duì)概念本質(zhì)的理解.指數(shù)函數(shù)概念的形成,經(jīng)歷了一個(gè)由粗到細(xì),由特殊到一般,由具體到抽象的漸進(jìn)過程,這樣更加符合人們的認(rèn)知心理.

      2.實(shí)驗(yàn)探索匯報(bào)交流

      (1)構(gòu)建研究方法

      師:我們定義了一個(gè)新的函數(shù),接下來,我們研究什么呢?

      生:研究函數(shù)的性質(zhì).

      〖問題2你打算如何研究指數(shù)函數(shù)的性質(zhì)?

      [設(shè)計(jì)意圖]學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、函數(shù)的表示方法與函數(shù)的一般性質(zhì),對(duì)函數(shù)有了初步的認(rèn)識(shí).在此認(rèn)知基礎(chǔ)上,引導(dǎo)學(xué)生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發(fā).教師應(yīng)充分尊重學(xué)生的思維個(gè)性,提供自主探究的平臺(tái),通過匯報(bào)交流活動(dòng)達(dá)成共識(shí)實(shí)現(xiàn)殊途同歸.中學(xué)階段,特別是高一新授課階段,提倡學(xué)生以形象思維作為抽象思維的支撐.

      [師生活動(dòng)]師生經(jīng)過討論,解決啟發(fā)性提示問題,確定研究的內(nèi)容與方法.

      [教學(xué)預(yù)設(shè)]學(xué)生能夠根據(jù)已有知識(shí)和經(jīng)驗(yàn),在教師的啟發(fā)引導(dǎo)下,明確研究的內(nèi)容以及研究的方法.部分學(xué)生會(huì)提出先作出具體函數(shù)圖象,觀察圖象,概括性質(zhì),并進(jìn)而歸納出一般函數(shù)的圖象的分布特征等性質(zhì).另一部分學(xué)生可能從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.

      師:(稍等片刻)我們一般要研究哪些性質(zhì)呢?

      生:變量取值范圍(定義域、值域)、單調(diào)性、奇偶性.

      師:(板書學(xué)生回答)怎樣研究這些性質(zhì)呢?

      生:先畫出函數(shù)圖象,觀察圖象,分析函數(shù)性質(zhì).

      生:先研究幾個(gè)具體的指數(shù)函數(shù),再研究一般情況.

      師:板書“畫圖觀察”,“取特殊值”

      (若沒有學(xué)生提出從特殊到一般的思路.師:底數(shù)a的取值不同,函數(shù)的性質(zhì)可能也會(huì)有不同.一次函數(shù)y=kx(k≠0)中,一次項(xiàng)系數(shù)k不同,函數(shù)性質(zhì)就不同.底數(shù)a可以取無數(shù)多個(gè)值,那我們?cè)趺崔k呢?)

      (若有學(xué)生通過對(duì)y=2x解析式的分析,得到了性質(zhì),并提出從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.師:你的想法也很有道理,不妨試一試.(仍引導(dǎo)學(xué)生從具體指數(shù)函數(shù)圖象入手.))

      [意圖分析]學(xué)習(xí)的過程就是一個(gè)不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學(xué)生提供由自己提出問題、確定研究方法的機(jī)會(huì),逐漸學(xué)會(huì)研究問題,促進(jìn)能力發(fā)展.

      (2)自主探究匯報(bào)交流

      師:我們確定了要研究的對(duì)象和具體做法,下面可以開始研究指數(shù)函數(shù)的性質(zhì)了.

      〖問題3選取數(shù)據(jù),畫出圖象,觀察特點(diǎn),歸納性質(zhì).

      [設(shè)計(jì)意圖]若直接規(guī)定底數(shù)取值,對(duì)于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據(jù)底數(shù)的大小分類討論,缺乏合理的解釋,學(xué)生對(duì)于圖象的認(rèn)識(shí)是被動(dòng)的.若在探究前經(jīng)討論確定底數(shù)取值,由于學(xué)生認(rèn)知水平的差異,仍可能會(huì)造成部分學(xué)生被動(dòng)接受.學(xué)生自主選擇底數(shù),雖有得到片面認(rèn)識(shí)的可能,但通過討論交流,學(xué)生能相互驗(yàn)證結(jié)論,仍能得到正確認(rèn)識(shí).并且學(xué)生能在過程中體會(huì)數(shù)據(jù)如何選擇,了解研究方法.

      由于描點(diǎn)作圖時(shí)列舉點(diǎn)的個(gè)數(shù)的限制,學(xué)生對(duì)x→∞時(shí)函數(shù)圖象特征缺乏直觀感受.而且由于所舉例子個(gè)數(shù)的限制,學(xué)生對(duì)于歸納的結(jié)論缺乏一般性的認(rèn)識(shí).教師應(yīng)利用繪圖軟件作出底數(shù)連續(xù)變化的圖象 ,驗(yàn)證猜想.

      數(shù)形結(jié)合、從特殊到一般的思維方法是概括歸納抽象對(duì)象的一般思維方法,本節(jié)課的重點(diǎn)是通過對(duì)指數(shù)函數(shù)圖象性質(zhì)的研究,總結(jié)研究函數(shù)的一般方法,應(yīng)充分發(fā)動(dòng)學(xué)生參與研究的每個(gè)過程,得到直接體驗(yàn).

      [師生活動(dòng)]學(xué)生選取不同的a的值,作出圖象,觀察它們之間的異同,總結(jié)指數(shù)函數(shù)的圖象特征與函數(shù)性質(zhì).

      [教學(xué)預(yù)設(shè)]學(xué)生通過觀察圖象,發(fā)現(xiàn)指數(shù)函數(shù)y=ax(a>0且a≠1)的性質(zhì).教師用實(shí)物投影儀展示學(xué)生所畫圖象,學(xué)生根據(jù)具體函數(shù)圖象說明具體函數(shù)性質(zhì).在學(xué)生說明過程中,教師引導(dǎo)學(xué)生對(duì)結(jié)論進(jìn)行適當(dāng)?shù)恼f明,進(jìn)而引導(dǎo)學(xué)生歸納一般指數(shù)函數(shù)的性質(zhì).教師引導(dǎo)學(xué)生關(guān)注列表描點(diǎn)作圖的過程,引導(dǎo)學(xué)生通過反思過程,并通過動(dòng)態(tài)圖象驗(yàn)證猜想,促進(jìn)學(xué)生體會(huì)數(shù)形結(jié)合的分析方法.教師尊重生成,但需引導(dǎo)學(xué)生區(qū)別指數(shù)函數(shù)本身的性質(zhì)與指數(shù)函數(shù)之間的性質(zhì).其中⑥⑦不強(qiáng)加于學(xué)生.對(duì)于⑥,要引導(dǎo)學(xué)生在同一坐標(biāo)系中畫出圖象,啟發(fā)學(xué)生觀察底數(shù)互為倒數(shù)的指數(shù)函數(shù)的圖象,先得到具體的例子.對(duì)于⑦,在例1第3小題中,會(huì)有學(xué)生提出利用不同底數(shù)指數(shù)函數(shù)圖象解決,可順勢(shì)利導(dǎo),也可布置為課后作業(yè),繼續(xù)研究.

      生:自主選擇數(shù)據(jù),在坐標(biāo)紙上列表作圖,列出函數(shù)性質(zhì).

      師:(巡視,必要時(shí)參與討論,及時(shí)提示任務(wù),待大部分學(xué)生有結(jié)論后,鼓勵(lì)學(xué)生交流,請(qǐng)學(xué)生匯報(bào).)有條理地整理一下結(jié)論,討論交流所得.(同時(shí)用實(shí)物投影儀展示學(xué)生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)

      生:(可能出現(xiàn)的情況)(1)在兩個(gè)坐標(biāo)系中畫圖;(2)所取底數(shù)均大于1;(3)兩個(gè)底數(shù)大于1,一個(gè)底數(shù)小于1;(4)關(guān)于y軸對(duì)稱的兩個(gè)指數(shù)函數(shù).

      師:(過程性引導(dǎo))底數(shù)你是怎么取的?你是怎樣觀察出結(jié)論的?在列表過程中,你有什么發(fā)現(xiàn)嗎?為什么要在兩個(gè)坐標(biāo)系中畫圖?為什么不也取兩個(gè)底數(shù)小于1?

      師:(用彩筆描粗圖象,故意出錯(cuò))錯(cuò)在哪里?為什么?

      生:指數(shù)函數(shù)是單調(diào)遞增的,過定點(diǎn)(0, 1).

      師:(引導(dǎo)學(xué)生規(guī)范表述,并板書)指數(shù)函數(shù)在(-∞, +∞)上單調(diào)遞增,圖象過定點(diǎn)(0, 1).

      師:指數(shù)函數(shù)還有其它性質(zhì)嗎?

      師:也就是說值域?yàn)?0, +∞).

      生:指數(shù)函數(shù)是非奇非偶函數(shù).

      師:有不同意見嗎?

      生:當(dāng)0

      (其它預(yù)設(shè):

      (1)當(dāng)a>1時(shí),若x>0,則y>1;若x<0,則y<1.

      當(dāng)00,則y<1;若x<0 y="">1.

      欲知誰正確,讓我們一起來觀察、研探.

      思路2.復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填空:(1)0N;(2)2Q;(3)-1.5R.

      類比實(shí)數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(答案:(1)∈;(2)?;(3)∈)

      推進(jìn)新課

      提出問題

      (1)觀察下面幾個(gè)例子:

     、貯={1,2,3},B={1,2,3,4,5};

     、谠O(shè)A為國興中學(xué)高一(3)班男生的全體組成的集合,B為這個(gè)班學(xué)生的全體組成的集合;

     、墼O(shè)C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};

      ④E={2,4,6},F(xiàn)={6,4,2}.

      你能發(fā)現(xiàn)兩個(gè)集合間有什么關(guān)系嗎?

      (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什么區(qū)別?

      (3)結(jié)合例子④,類比實(shí)數(shù)中的結(jié)論:“若a≤b,且b≤a,則a=b”,在集合中,你發(fā)現(xiàn)了什么結(jié)論?

      (4)按升國旗時(shí),每個(gè)班的同學(xué)都聚集在一起站在旗桿附近指定的區(qū)域內(nèi),從樓頂向下看,每位同學(xué)是哪個(gè)班的,一目了然.試想一下,根據(jù)從樓頂向下看的,要想直觀表示集合,聯(lián)想集合還能用什么表示?

      (5)試用Venn圖表示例子①中集合A和集合B.

      (6)已知A?B,試用Venn圖表示集合A和B的關(guān)系.

      (7)任何方程的解都能組成集合,那么x2+1=0的實(shí)數(shù)根也能組成集合,你能用Venn圖表示這個(gè)集合嗎?

      (8)一座房子內(nèi)沒有任何東西,我們稱為這座房子是空房子,那么一個(gè)集合沒有任何元素,應(yīng)該如何命名呢?

      (9)與實(shí)數(shù)中的.結(jié)論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什么結(jié)論?

      活動(dòng):教師從以下方面引導(dǎo)學(xué)生:

      (1)觀察兩個(gè)集合間元素的特點(diǎn).

      (2)從它們含有的元素間的關(guān)系來考慮.規(guī)定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).

      (3)實(shí)數(shù)中的“≤”類比集合中的 .

      (4)把指定位置看成是由封閉曲線圍成的,學(xué)生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內(nèi).教師指出:為了直觀地表示集合間的關(guān)系,我們常用平面上封閉曲線的內(nèi)部代表集合,這種圖稱為Venn圖.

      (5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.

      (6)分類討論:當(dāng)A B時(shí),A B或A=B.

      (7)方程x2+1=0沒有實(shí)數(shù)解.

      (8)空集記為 ,并規(guī)定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).

      (9)類比子集.

      討論結(jié)果:

      (1)①集合A中的元素都在集合B中;

     、诩螦中的元素都在集合B中;

      ③集合C中的元素都在集合D中;

     、芗螮中的元素都在集合F中.

      可以發(fā)現(xiàn):對(duì)于任意兩個(gè)集合A,B有下列關(guān)系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.

      (2)例子①中A B,但有一個(gè)元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.

      (3)若A B,且B A,則A=B.

      (4)可以把集合中元素寫在一個(gè)封閉曲線的內(nèi)部來表示集合.

      (5)如圖1121所示表示集合A,如圖1122所示表示集合B.

      圖1-1-2-1 圖1-1-2-2

      (6)如圖1-1-2-3和圖1-1-2-4所示.

      圖1-1-2-3 圖1-1-2-4

      (7)不能.因?yàn)榉匠蘹2+1=0沒有實(shí)數(shù)解.

      (8)空集.

    高一數(shù)學(xué)教學(xué)計(jì)劃15

      教材教法分析

      本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課.該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化.教材通過一個(gè)實(shí)際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識(shí)的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識(shí)的探究過程中.同時(shí),通過對(duì)《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對(duì)今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點(diǎn)間的距離》和選修2-1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系.

      學(xué)情分析

      一方面學(xué)生通過對(duì)空間幾何體:柱、錐、臺(tái)、球的學(xué)習(xí),處理了空間中點(diǎn)、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對(duì)建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識(shí),因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想.這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ).

      教學(xué)目標(biāo)

      1.知識(shí)與技能

     、偻ㄟ^具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性

      ②了解空間直角坐標(biāo)系,掌握空間點(diǎn)的坐標(biāo)的確定方法和過程

      ③感受類比思想在探究新知識(shí)過程中的作用

      2.過程與方法

     、俳Y(jié)合具體問題引入,誘導(dǎo)學(xué)生探究

      ②類比學(xué)習(xí),循序漸進(jìn)

      3.情感態(tài)度與價(jià)值觀

      通過用類比的數(shù)學(xué)思想方法探究新知識(shí),使學(xué)生感受新舊知識(shí)的聯(lián)系和研究事物從低維到高維的一般方法.通過實(shí)際問題的引入和解決,讓學(xué)生體會(huì)數(shù)學(xué)的實(shí)踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間.

      教學(xué)重點(diǎn)

      本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的`建立,對(duì)今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點(diǎn)確立為空間直角坐標(biāo)系的理解.

      教學(xué)難點(diǎn)

      通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點(diǎn)的坐標(biāo)。

      先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會(huì)用坐標(biāo)刻畫平面內(nèi)任意點(diǎn)的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出第三根軸的建立,進(jìn)而感受逐步發(fā)展得到空間直角坐標(biāo)系的建立,再逐步掌握利用坐標(biāo)表示空間任意點(diǎn)的位置.總得來說,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論.

    【高一數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:

    高一數(shù)學(xué)的教學(xué)計(jì)劃06-09

    高一數(shù)學(xué)教學(xué)計(jì)劃【薦】12-28

    中職高一數(shù)學(xué)教學(xué)計(jì)劃12-28

    高一數(shù)學(xué)教學(xué)計(jì)劃(15篇)07-14

    高一數(shù)學(xué)教學(xué)計(jì)劃精選15篇12-23

    高一數(shù)學(xué)教學(xué)計(jì)劃15篇12-18

    高一數(shù)學(xué)教學(xué)計(jì)劃集合15篇12-28

    高一數(shù)學(xué)教學(xué)計(jì)劃(通用15篇)12-24

    高一數(shù)學(xué)教學(xué)計(jì)劃(匯編15篇)12-24