日本日本免费一区视频大片,鲁一鲁亚洲无线码影片,欧美日韩蜜桃在线播放,久久亚洲精品视频免

<sub id="hdorw"></sub>

  • <legend id="hdorw"></legend>

    《全等三角形》教案

    時間:2024-08-30 07:51:09 教案 我要投稿

    《全等三角形》教案

      作為一名教學工作者,通常會被要求編寫教案,教案是教學藍圖,可以有效提高教學效率。那么優(yōu)秀的教案是什么樣的呢?下面是小編精心整理的《全等三角形》教案,歡迎大家分享。

    《全等三角形》教案

    《全等三角形》教案1

      教學目標:

      1、知識目標:

      (1)知道什么是全等形、全等三角形及全等三角形的對應元素;

      (2)知道全等三角形的性質(zhì),能用符號正確地表示兩個三角形全等;

      (3)能熟練找出兩個全等三角形的對應角、對應邊。

      2、能力目標:

      (1)通過全等三角形角有關概念的學習,提高同學數(shù)學概念的辨析能力;

      (2)通過找出全等三角形的對應元素,培養(yǎng)同學的識圖能力。

      3、情感目標:

      (1)通過感受全等三角形的對應美激發(fā)同學熱愛科學勇于探索的精神;

      (2)通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受,培養(yǎng)同學勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧。

      教學重點:

      全等三角形的性質(zhì)。

      教學難點:

      找全等三角形的對應邊、對應角

      教學用具:

      直尺、微機

      教學方法:

      自學輔導式

      教學過程:

      1、全等形及全等三角形概念的引入

      (1)動畫(幾何畫板)顯示:

      問題:你能發(fā)現(xiàn)這兩個三角形有什么美妙的關系嗎?

      一般同學都能發(fā)現(xiàn)這兩個三角形是完全重合的`。

      (2)同學自己動手

      畫一個三角形:邊長為4cm,5cm,7cm.然后剪下來,同桌的兩位同學配合,把兩個三角形放在一起重合。

      (3)獲取概念

      讓同學用自己的語言敘述:

      全等三角形、對應頂點、對應角以及有關數(shù)學符號。

      2、全等三角形性質(zhì)的發(fā)現(xiàn):

      (1)電腦動畫顯示:

      問題:對應邊、對應角有何關系?

      由同學觀察動畫發(fā)現(xiàn),兩個三角形的三組對應邊相等、三組對應角相等。

      3、找對應邊、對應角以及全等三角形性質(zhì)的應用

      (1)投影顯示題目:

      D、AD∥BC,且AD=BC

      分析:由于兩個三角形完全重合,故面積、周長相等。至于D,因為AD和BC是對應邊,因此AD=BC。C符合題意。

      說明:本題的解題關鍵是要知道中兩個全等三角形中,對應頂點定在對應的位置上,易錯點是容易找錯對應角。

      分析:對應邊和對應角只能從兩個三角形中找,所以需將從復雜的圖形中分離出來

      說明:根據(jù)位置元素來找:有相等元素,其即為對應元素:

      然后依據(jù)已知的對應元素找:(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角。

      說明:利用“運動法”來找

      翻折法:找到中心線經(jīng)此翻折后能互相重合的兩個三角形,易發(fā)現(xiàn)其對應元素

      旋轉(zhuǎn)法:兩個三角形繞某一定點旋轉(zhuǎn)一定角度能夠重合時,易于找到對應元素

      平移法:將兩個三角形沿某一直線推移能重合時也可找到對應元素

      求證:AE∥CF

      分析:證明直線平行通常用角關系(同位角、內(nèi)錯角等),為此想到三角形全等后的性質(zhì)――對應角相等

      ∴AE∥CF

      說明:解此題的關鍵是找準對應角,可以用平移法。

      分析:AB不是全等三角形的對應邊,

      但它通過對應邊轉(zhuǎn)化為AB=CD,而使AB+CD=AD-BC

      可利用已知的AD與BC求得。

      說明:解決本題的關鍵是利用三角形全等的性質(zhì),得到對應邊相等。

      (2)題目的解決

      這些題目給出以后,先要求同學獨立思考后回答,其它同學補充完善,并可以提出自己的看法。教師重點指導,師生共同總結(jié):找對應邊、對應角通常的幾種方法:

      投影顯示:

      (1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;

      (2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;

      (3)有公共邊的,公共邊一定是對應邊;

      (4)有公共角的,角一定是對應角;

      (5)有對頂角的,對頂角一定是對應角;

      兩個全等三角形中一對最長邊(或最大角)是對應邊(或?qū)?,一對最短邊(或最小的角角)是對應邊(或?qū)?

      4、課堂獨立練習,鞏固提高

      此練習,主要加強同學的識圖能力,同時,找準全等三角形的對應邊、對應角,是以后學好幾何的關鍵。

      5、小結(jié):

      (1)如何找全等三角形的對應邊、對應角(基本方法)

      (2)全等三角形的性質(zhì)

      (3)性質(zhì)的應用

      讓同學自由表述,其它同學補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu)。

      6、布置作業(yè)

      a.書面作業(yè)P55#2、3、4

      b.上交作業(yè)(中考題)

    《全等三角形》教案2

      一、教學目標

      【知識與技能】

      理解并掌握全等三角形的概念及性質(zhì)。

      【過程與方法】

      經(jīng)歷觀察、操作、測量等探究活動,增強動手能力和解決問題的能力。

      【情感、態(tài)度價值觀】

      感受生活中的數(shù)學,體會數(shù)學的魅力,從而激發(fā)學習數(shù)學的興趣,獲得成功的情感體驗。

      二、教學重難點

      【教學重點】

      全等三角形的概念與性質(zhì)。

      【教學難點】

      全等三角形的性質(zhì)。

      三、教學過程

      (一)導入新課

      圖片導入,請學生觀察生活中的全等圖形的圖片。提問:其中的圖形有什么特點?適當請學生舉例,導入課題。

      (二)講解新知

      1.操作觀察,得出概念

      給學生分發(fā)紙板,請他們將各自的三角尺按在紙板上,畫下圖形,并裁下。這里要提醒學生用剪刀要注意安全。

      提問:照圖形裁下來的紙板和三角尺的`形狀、大小完全一樣嗎?把三角尺和裁得的紙板放在一起能夠完全重合嗎?

      預設:形狀大小完全一樣,能完全重合。

      多媒體上展示用同一張底片沖洗出來的兩張尺寸大小一樣的照片,請學生觀察,放在一起是否也能完全重合。

      接著請學生回答,教師展示洗出來的兩張照片,進行重合,請學生觀察。

      在學生得到特點之后,教師總結(jié)全等形和全等三角形的概念。

      2.平移、翻折、旋轉(zhuǎn),對應關系

      小組活動:對一個三角形作出平移、翻折、旋轉(zhuǎn)三種變換,然后動手操作進行探究,看看對于變換前后的兩個三角形,什么變了?什么沒變?

      預設:位置變了,形狀大小沒變。

      教師總結(jié):一個圖形經(jīng)過平移、翻折、旋轉(zhuǎn)后,位置變化了,但形狀、大小都沒有改變,即平移、翻折、旋轉(zhuǎn)前后的圖形全等。

      3.對應頂點、對應邊、對應角

      請學生將平移前后的兩個三角形重合,找出重合的頂點、邊、角,并標出來。

      教師提出概念:把兩個全等的三角形重合到一起,重合的頂點叫做對應頂點,重合

    《全等三角形》教案3

      【教學目標】:

      1、知識與技能:

      1.三角形全等的條件:角邊角、角角邊.

      2.三角形全等條件小結(jié).

      3.掌握三角形全等的“角邊角”“角角邊”條件.

      4.能運用全等三角形的條件,解決簡單的推理證明問題.

      2、過程與方法:

      1.經(jīng)歷探究全等三角形條件的過程,進一步體會操作、?歸納獲得數(shù)學規(guī)律的過程.

      2.掌握三角形全等的“角邊角”“角角邊”條件.

      3.能運用全等三角形的條件,解決簡單的推理證明問題.

      3、情感態(tài)度與價值觀:

      通過畫圖、探究、歸納、交流,使學生獲得一些研究問題的經(jīng)驗和方法,發(fā)展實踐能力和創(chuàng)新精神

      【教學情景導入】:

      提出問題,創(chuàng)設情境

      復習:

      (1)三角形中已知三個元素,包括哪幾種情況?

      三個角、三個邊、兩邊一角、兩角一邊.

      (2)到目前為止,可以作為判別兩三角形全等的方法有幾種?各是什么?

      三種:

     、俣x;

      ②SSS;

     、跾AS.

      2.[師]在三角形中,已知三個元素的`四種情況中,我們研究了三種,今天我們接著探究已知兩角一邊是否可以判斷兩三角形全等呢?

      導入新課

      [師]三角形中已知兩角一邊有幾種可能?

      [生]1.兩角和它們的夾邊.

      2.兩角和其中一角的對邊.

      做一做:

      三角形的兩個內(nèi)角分別是60°和80°,它們的夾邊為4cm,?你能畫一個三角形同時滿足這些條件嗎?將你畫的三角形剪下,與同伴比較,觀察它們是不是全等,你能得出什么規(guī)律?

      學生活動:自己動手操作,然后與同伴交流,發(fā)現(xiàn)規(guī)律.

      教師活動:檢查指導,幫助有困難的同學.

      活動結(jié)果展示:

      以小組為單位將所得三角形重疊在一起,發(fā)現(xiàn)完全重合,這說明這些三角形全等.

      提煉規(guī)律:兩角和它們的夾邊對應相等的兩個三角形全等(可以簡寫成“角邊角”或“ASA”).

      [師]我們剛才做的三角形是一個特殊三角形,隨意畫一個三角形ABC,?能不能作一個△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?

      [生]能.

      學生口述畫法,教師進行多媒體課件演示,使學生加深對“ASA”的理解.

      [生]①先用量角器量出∠A與∠B的度數(shù),再用直尺量出AB的邊長.

      ②畫線段A′B′,使A′B′=AB.

     、鄯謩e以A′、B′為頂點,A′B′為一邊作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.

     、苌渚A′D與B′E交于一點,記為C′ 即可得到△A′B′C′.

      將△A′B′C′與△ABC重疊,發(fā)現(xiàn)兩三角形全等.

      [師]

      于是我們發(fā)現(xiàn)規(guī)律:

      兩角和它們的夾邊對應相等的兩三角形全等(可以簡寫成“角邊角”或“ASA”).

      這又是一個判定三角形全等的條件. [生]在一個三角形中兩角確定,第三個角一定確定.我們是不是可以不作圖,用“ASA”推出“兩角和其中一角的對邊對應相等的兩三角形全等”呢?

      [師]你提出的問題很好.溫故而知新嘛,請同學們來驗證這種想法.

      【教學過程設計】:

      如圖,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC與△DEF全等嗎?能利用角邊角條件證明你的結(jié)論嗎?

      證明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

      ∠A=∠D,∠B=∠E

      ∴∠A+∠B=∠D+∠E

      ∴∠C=∠F

      在△ABC和△DEF中

      ∴△ABC≌△DEF(ASA).

      于是得規(guī)律:

      兩個角和其中一角的對邊對應相等的兩個三角形全等(可以簡寫成“角角邊”或“AAS”).

      [例]如下圖,D在AB上,E在AC上,AB=AC,∠B=∠C.

      求證:AD=AE.

      [師生共析]AD和AE分別在△ADC和△AEB中,所以要證AD=AE,只需證明△ADC≌△AEB即可.

      學生寫出證明過程.

      證明:在△ADC和△AEB中

      所以△ADC≌△AEB(ASA)

      所以AD=AE.

      [師]到此為止,在三角形中已知三個條件探索三角形全等問題已全部結(jié)束.請同學們把三角形全等的判定方法做一個小結(jié).

      學生活動:自我回憶總結(jié),然后小組討論交流、補充.

      有五種判定三角形全等的條件.

      1.全等三角形的定義

      2.邊邊邊(SSS)

      3.邊角邊(SAS)

      4.角邊角(ASA)

      5.角角邊(AAS)

      推證兩三角形全等,要學會聯(lián)系思考其條件,找它們對應相等的元素,這樣有利于獲得解題途徑.

      練習:圖中的兩個三角形全等嗎?請說明理由.

      答案:圖(1)中由“ASA”可證得△ACD≌△ACB.圖(2)由“AAS”可證得△ACE≌△BDC.

      【課堂作業(yè)】 1.如圖,BO=OC,AO=DO,則△AOB與△DOC全等嗎?

      小亮的思考過程如下.

      △AOB≌△DOC

      2、已知△ABC和△A′B′C′,下列條件中,不能保證△ABC和△A′B′C?′全等的是( )

      A.AB=A′B′ AC=A′C′ BC=B′C′

      B.∠A=∠A′ ∠B=∠B′ AC=A′C′

      C.AB=A′B′ AC=A′C′ ∠A=∠A′

      D.AB=A′B′ BC=B′C′ ∠C=∠C′

      3、要說明△ABC和△A′B′C′全等,已知條件為AB=A′B′,∠A=∠A′,不需要的條件為( )

      A.∠B=∠B′ B.∠C=∠C′; C.AC=A′C′ D.BC=B′C′

      4、要說明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,則不需要的條件是( A.∠C=∠C′ B.AB=A′B′; C.AC=A′C′ D.BC=B′C′

      5、兩個三角形全等,那么下列說法錯誤的是( )

      A.對應邊上的三條高分別相等; B.對應邊的三條中線分別相等

      C.兩個三角形的面積相等; D.兩個三角形的任何線段相等

      6、如圖,已知∠A=∠D,AB=DE,AF=CD,BC=EF.

    《全等三角形》教案4

      一、引言

      根據(jù)《全日制義務教育數(shù)學課程標準》具體目標,結(jié)合學生已有的知識經(jīng)驗和認知水平,提供具有探究性的問題,讓學生主動參與到解決問題的數(shù)學活動中,理性思考、大膽猜測,合理推斷,從何培養(yǎng)學生的邏輯思維能力,發(fā)展學生的數(shù)學觀念和數(shù)學思想,使學生形成良好的思維品質(zhì),達到啟迪思維、開發(fā)智力的目的。此案例就構(gòu)造三角形全等為例,談談在課堂教學中如何發(fā)展學生的直覺思維,培養(yǎng)其創(chuàng)新意識。

      二、全等三角形知識點的地位和作用

      全等三角形體現(xiàn)的是一種十分重要的保距變換,許多圖形中線段之間,角之間的相互關系經(jīng)常通過三角形全等來判斷、得出,三角形全等還是基本尺規(guī)作圖的根本依據(jù)。由于全等三角形的判定及對全等三角形邊、角之間的關系處理涉及推理,因此通過學習全等三角形知識對培養(yǎng)學生的邏輯推理和表達能力有著非常重要的作用。

      三、全等三角形判定教學例子

      假設情景:

      某次組織學生參加生日聚會,需要裁剪小旗幟,如何讓小旗幟和第一個剪裁的大小完全相同呢?

      由學生嘗試把實際問題轉(zhuǎn)化為數(shù)學問題:怎樣畫一個三角形與已知三角形全等?在解決這個問題的過程中,鼓勵學生大膽猜想,激發(fā)同學們的主動性和創(chuàng)造性。學生可能會提出:測出參照三條邊的長度,或量出三個角的度數(shù),或測量一條邊、一個角的方案等。對于這些方案教師不急于評價,先引導學生分析各種方案的共同特點:都是先通過已知三角形的邊、角的條件畫出一個三角形與原三角形全等;不同點是所需條件的個數(shù)不同。學生的思維在此產(chǎn)生碰撞:誰的想法可行呢?要使兩個三角形全等到底需要滿足哪些條件?進一步明確本節(jié)課研究的方向,引出課題。

      學生在探究過程中會根據(jù)已有的知識積累,利用“幾何畫板”作圖探究,舉出反例來說明已知一個條件或兩個條件畫出的三角形與已知三角形不一定全等,這時教師鼓勵學生畫出盡可能類型的反例,并引導學生將舉出的反例進行分類,初步體驗分類的數(shù)學思想,為下一步已知三個條件畫出三角形與已知三角形全等打下基礎。

      在討論過程中,教師以合作者的身份深入到小組中,與同學交流,了解學生的探究過程并給予適當點撥,然后全班交流小組討論結(jié)果,歸納出可能的分類情況:

      按已知三角形邊和角的個數(shù)可分為:三邊、三角、兩角一邊、兩邊一角。

      個別小組可能會提出根據(jù)邊和角的位置關系,兩邊一角可繼續(xù)分為兩邊及夾角和兩邊及一邊對角,兩角一邊可繼續(xù)分為兩角及夾邊和兩角及一角對邊。

      對學生的嚴謹求實的學習態(tài)度教師要給予充分的可定和贊賞。

      在此問題的解決過程中,不僅訓練了學生將知識分類,并使學生充分感受到團隊合作的'重要意義和交流溝通的重要性。在探索過程中,對于三邊、三角、兩角及夾邊、兩邊及夾角這四種情況學生很容易驗證,而只有兩角及一角對邊和兩邊及一邊對角條件是討論的焦點。

      這時,教師留給學生充分的思考時間,經(jīng)過交流,學生能夠得出利用三角形的內(nèi)角和定理,兩角及一角對邊的條件可以轉(zhuǎn)化為兩角及夾邊的情況。而在畫兩邊及一邊對角的三角形時,學生可能得出這樣幾種結(jié)果:

     。1)畫出的三角形與原三角形全等;(2)畫出的三角形與原三角形不全等;(3)畫出了兩個三角形;

      此時,留給學生更多的時間,充分討論,達成共識:此條件能夠得到兩個不同的三角形;為突破該難點,教師利用畫板展示作圖過程,深入分析產(chǎn)生兩個三角形的原因,使學生進一步明確兩邊及一邊對角不能作為判定三角形全等的條件。在此過程中,教師對個別學生富有個性的學習表現(xiàn)給予肯定和激勵,讓同學們感受到成功的喜悅。

      難點的突破力求發(fā)揮自主學習的優(yōu)越性,放手讓學生去探索,在師生互動、生生互動的氛圍中使學生思維的靈活性和創(chuàng)造性得到發(fā)展。

      最后展示實驗的結(jié)果,得出一般結(jié)論:根據(jù)三邊、兩邊及夾角、兩角及夾邊、兩角及一角對邊這四種條件畫出的三角形與原三角形全等。

      四、全等三角形的教學反思

      在三角形全等的教學過程中,因有實例比較,學生對三角形全等的概念理解應該不成問題,從整個初中學習過程中來說,三角形全等知識學習是學好其它幾何知識的起步點,在八和九年級幾何學習中都離不開三角形全等有關知識,如旋轉(zhuǎn)、軸對稱、園、坐標系等,但在學習中學生也存在兩個主要問題。

      (1)三角形全等的說理表達

      邏輯語言表達這個過程的訓練需要逐步進行,也就是題目要簡單點,敘述過程從兩句即一個因果開始訓練書寫,再到兩個因果訓練,兩個因果的書寫過程時間要長一些,因為兩個因果會寫了,再多幾個因果也不太會出問題了,當然在注意書寫要求的同時還要強調(diào)理解邏輯關系

     。2)幾何邏輯思維能力培養(yǎng)

      三角形全等知識在培養(yǎng)學生邏輯語言的同時,更重要的是在培養(yǎng)學生的邏輯思維能力、空間想象能力,在這一點上學生間的差異比較明顯,要縮小差距共同提高,培養(yǎng)的關鍵點是要讓學生在頭腦中逐漸有幾何圖形的圖形感,能在大腦中思考幾何圖形中的問題,要做到這一點,第一步要讓學生多用實物例子,多動手操作,多回憶見到過的類似圖形,培養(yǎng)圖形感,第二步要做到能在復雜圖形中分解目標圖形,學會動態(tài)思維,只有這樣才能在復雜圖形中捕捉、篩選目標圖形,培養(yǎng)空間思維能力。

    《全等三角形》教案5

      全等三角形教案

      1.只給定一個角時:

      2.給出的兩個條件可能是:一邊一內(nèi)角、兩內(nèi)角、兩邊.

      可以發(fā)現(xiàn)按這些條件畫出的三角形都不能保證一定全等.

      五、課堂小結(jié)

      我們有五種判定三角形全等的方法:

      1.全等三角形的定義

      2.判定定理:邊邊邊(SSS) 邊角邊(SAS) 角邊角(ASA) 角角邊(AAS)

      六、布置作業(yè)

      必做題:課本P44頁習題12.2中的第6,選做題:第11題

      七、板書設計

      課 題 :12.2.4三角形全等的判定《4》

      【教學目標】:

      知識與技能:直角三角形全等的條件:“斜邊、直角邊”.

      過程與方法:經(jīng)歷探究直角三角形全等條件的過程,體會一般與特殊的辯證關系.掌握直角三角形全等的條件:“斜邊、直角邊”.能運用全等三角形的條件,解決簡單的推理證明問題.

      情感態(tài)度與價值觀:通過畫圖、探究、歸納、交流使學生獲得一些研究問題的經(jīng)驗和方法.發(fā)展實踐能力和創(chuàng)新精神

      教學重點:運用直角三角形全等的條件解決一些實際問題。

      教學難點:熟練運用直角三角形全等的條件解決一些實際問題。

      教學方法:采用啟發(fā)誘導,實例探究,講練結(jié)合,小組合作等方法。

      學情分析:這節(jié)課是學了全等三角形的邊邊邊.邊角邊.角邊角邊后的一節(jié)課、根據(jù)直角三角形的特點、探討出 “HL”.學生一定能理解。

      課前準備 全等三角形紙片、三角板、

      【教學過程】:

      一、提出問題,復習舊知

      1、判定兩個三角形全等的方法: 、 、 、

      2、如圖,Rt△ABC中,直角邊是 、 ,斜邊是

      3、如圖,AB⊥BE于C,DE⊥BE于E,

      (1)若∠A=∠D,AB=DE,

      則△ABC與△DEF (填“全等”或“不全等” )

      根據(jù) (用簡寫法)

     。2)若∠A=∠D,BC=EF,

      則△ABC與△DEF (填“全等”或“不全等” )

      根據(jù) (用簡寫法)

     。3)若AB=DE,BC=EF,

      則△ABC與△DEF (填“全等”或“不全等” )

      根據(jù) (用簡寫法)

      (4)若AB=DE,BC=EF,AC=DF

      則△ABC與△DEF (填“全等”或“不全等” )

      根據(jù) (用簡寫法)

      二 、創(chuàng)設情境,導入新課

      如圖,舞臺背景的形狀是兩個直角三角形,工作人員想知道這兩個直角三角形是否全等,但兩個三角形都有一條直角邊被花盆遮住無法測量.(播放)

     。1)你能幫他想個辦法嗎?

     。2)如果他只帶了一個卷尺,能完成這個任務嗎?

     。1)[生]能有兩種方法.

      第一種方法:用直尺量出斜邊的'長度,再用量角器量出其中一個銳角的大小,若它們對應相等,根據(jù)“AAS”可以證明兩直角三角形是全等的

      第二種方法:用直尺量出不被遮住的直角邊長度,再用量角器量出其中一個銳角的大小,若它們對應相等,根據(jù)“ASA”或“AAS”,可以證明這兩個直角三角形全等.

      可是,沒有量角器,只有卷尺,那么他只能量出斜邊長度和不被遮住的直角邊邊長,可是它們又不是“兩邊夾一角的關系”,所以我沒法判定它們?nèi)?

      [師]這位師傅量了斜邊長和沒遮住的直角邊邊長,發(fā)現(xiàn)它們對應相等,于是他判斷這兩個三角形全等.你相信嗎?

      三、探究

      做一做:

      已知線段AB=5c,BC=4c和一個直角,利用尺規(guī)做一個直角三角形,使∠C=90°,AB作為斜邊.做好后,將△ABC剪下與同伴比較,看能發(fā)現(xiàn)什么規(guī)律?

     。▽W生自主完成后,與同伴交流作圖心得,然后由一名同學口述作圖方法.老師做多媒體演示,激發(fā)學習興趣).

      作法:

      第一步:作∠MCN=90°.

      第二步:在射線CM上截取CB=4c.

      第三步:以B為圓心,5c為半徑畫弧交射線CN于點A.

      第四步:連結(jié)AB.

      就可以得到所想要的Rt△ABC.(如下圖所示)

      將Rt△ABC剪下,同一組的同學做的三角形疊在一起,發(fā)現(xiàn)這些三角形全等.

      可以驗證,對一般的直角三角形也有這樣的規(guī)律.

      探究結(jié)果總結(jié):

      斜邊和一條直角邊對應相等的兩個直角三角形全等(可以簡寫成“斜邊、直角邊”和“HL”).

      [師]你能用幾種方法說明兩個直角三角形全等呢?

      [生]直角三角形也是三角形,一般來說,可以用“定義、SSS、SAS、ASA、AAS”這五種方法,但它又具有特殊性,還可以用“HL”的方法判定.

      [師]很好,兩直角三角形中由于有直角相等的條件,所以判定兩直角三角形全等只須找兩個條件,但這兩個條件中至少要有一個條件是一對對應邊才行.

      四、例題:

      [例1]如圖,AC⊥BC,BD⊥AD,AC=BD. 求證:BC=AD.

      分析:BC和AD分別在△ABC和△ABD中,所以只須證明△ABC≌△BAD,就可以證明BC=AD了.

      證明:∵AC⊥BC,BD⊥AD

      ∴∠D=∠C=90°

      在Rt△ABC和Rt△BAD中

      ∴Rt△ABC≌Rt△BAD(HL)

      ∴BC=AD.

      [例2]有兩個長度相等的滑梯,左邊滑梯的高AC與右邊滑梯水平方向的長度DF相等,兩滑梯傾斜角∠ABC和∠DFE有什么關系?

      [師生共析]∠ABC和∠DFE分別在Rt△ABC和Rt△DEF中,已知條件中這兩個三角形又有一些對應的等量關系,所以可以證明這兩個三角形全等得到對應角相等,顯然,可以看出這兩個角不相等,它們又是直角三角形中的銳角,是不是互余呢?我們試試看.

      證明:在Rt△ABC和Rt△DEF中 又∵∠DEF+∠DFE=90°

      ∴∠ABC+∠DFE=90° 所以Rt△ABC≌Rt△DEF(HL)

      ∴∠ABC=∠DEF

      即兩滑梯的傾斜角∠ABC與∠DFE互余.

      五、課時小結(jié)

      至此,我們有六種判定三角形全等的方法:

      1.全等三角形的定義 2.邊邊邊(SSS) 3.邊角邊(SAS)

      4.角邊角(ASA) 5.角角邊(AAS) 6.HL(僅用在直角三角形中)

      六、布置作業(yè)

      必做題: 課本P44頁習題12.2中的第7,8,選做題:12,13題

      七、板書設計

    《全等三角形》教案6

      一、教材分析

      (一) 本節(jié)內(nèi)容在教材中的地位與作用。

      對于全等三角形的研究,實際是平面幾何中對封閉的兩個圖形關系研究的第一步。它是兩三角形間最簡單、最常見的關系。本節(jié)《探索三角形全等的條件》是學生在認識三角形的基礎上,在了解全等圖形和全等三角形以后進行學習的,它既是前面所學知識的延伸與拓展,又是后繼學習探索相似形的條件的基礎,并且是用以說明線段相等、兩角相等的重要依據(jù)。因此,本節(jié)課的知識具有承上啟下的作用。同時,人教版教材將“邊角邊”這一識別方法作為五個基本事實之一,說明本節(jié)的內(nèi)容對學生學習幾何說理來說具有舉足輕重的作用。

      (二) 教學目標

      在本課的教學中,不僅要讓學生學會“邊角邊”這一全等三角形的識別方法,更主要地是要讓學生掌握研究問題的方法,初步領悟分類討論的數(shù)學思想。同時,還要讓學生感受到數(shù)學來源于生活,又服務于生活的基本事實,從而激發(fā)學生學習數(shù)學的興趣。為此,我確立如下教學目標:

      (1)經(jīng)歷探索三角形全等條件的過程,體會分析問題的方法,積累數(shù)學活動的經(jīng)驗。

      (2)掌握“邊角邊”這一三角形全等的識別方法,并能利用這些條件判別兩個三角形是否全等,解決一些簡單的實際問題。

      (3)培養(yǎng)學生勇于探索、團結(jié)協(xié)作的精神。

      (三) 教材重難點

      由于本節(jié)課是第一次探索三角形全等的條件,故我確立了以“探究全等三角形的必要條件的個數(shù)及探究邊角邊這一識別方法作為教學的重點,而將其發(fā)現(xiàn)過程以及邊邊角的辨析作為教學的難點。同時,我將采用讓學生動手操作、合作探究、媒體演示的方式以及滲透分類討論的數(shù)學思想方法教學來突出重點、突破難點。

      (四)教學具準備,教具:

      相關多媒體課件;學具:剪刀、紙片、直尺。畫有相關圖片的作業(yè)紙。

      二、教法選擇與學法指導

      本節(jié)課主要是“邊角邊”這一基本事實的發(fā)現(xiàn),故我在課堂教學中將盡量為學生提供“做中學”的時空,讓學生進行小組合作學習,在“做”的過程中潛移默化地滲透分類討論的數(shù)學思想方法,遵循“教是為了不教”的原則,讓學生自得知識、自尋方法、自覓規(guī)律、自悟原理。

      三、教學流程

      (一)創(chuàng)設情景,激發(fā)求知欲望

      首先,我出示一個實際問題:

      問題:皮皮公司接到一批三角形架的加工任務,客戶的要求是所有的三角形必須全等。質(zhì)檢部門為了使產(chǎn)品順利過關,提出了明確的要求:要逐一檢查三角形的三條邊、三個角是不是都相等。技術(shù)科的毛毛提出了質(zhì)疑:分別檢查三條邊、三個角這6個數(shù)據(jù)固然可以。但為了提高我們的效率,是不是可以找到一個更優(yōu)化的方法,只量一個數(shù)據(jù)可以嗎?兩個呢?……

      然后,教師提出問題:毛毛已提出了這么一個設想,同學們是否可以和毛毛一起來攻克這個難題呢?

      這樣設計的目的是既交代了本節(jié)課要研究和學習的主要問題,又能較好地激發(fā)學生求知與探索的欲望,同時也為本節(jié)課的教學做好了鋪墊。

      (二)引導活動,揭示知識產(chǎn)生過程

      數(shù)學教學的本質(zhì)就是數(shù)學活動的教學,為此,本節(jié)課我設計了如下的系列活動,旨在讓學生通過動手操作、合作探究來揭示“邊角邊”判定三角形全等這一知識的產(chǎn)生過程。

      活動一:讓學生通過畫圖或者舉例說明,只量一個數(shù)據(jù),即一條邊或一個角不能判斷兩個三角形全等。

      活動二:讓學生就測量兩個數(shù)據(jù)展開討論。先讓學生分析有幾種情況:即邊邊、邊角、角角。再由各小組自行探索。同樣可以讓學生舉反例說明,也可以通過畫圖說明。

      活動三:在兩個條件不能判定的基礎上,只能再添加一個條件。先讓學生討論分幾種情況,教師在啟發(fā)學生有序思考,避免漏解。

      教師提出3個角不能判定兩三角形全等,實質(zhì)我們已經(jīng)討論過了。明確今天的任務:討論兩條邊一個角是否可以判定兩三角形全等。師生再共同探討兩邊一角又分為兩邊一夾角與兩邊一對角兩種情況。

      活動四:討論第一種情況:各小組每人用一張長方形紙剪一個直角三角形(只用直尺和剪刀),怎樣才能使各小組內(nèi)部剪下的直角三角形都全等呢?主要是讓學生體驗研究問題通?梢韵葟奶厥馇闆r考慮,再延伸到一般情況。

      活動五:出示課本上的3幅圖,讓學生通過觀察、進行猜想,再測量或剪下來驗證。并說說全等的圖形之間有什么共同點。

      活動六:小組競賽:每人畫一個三角形,其中一個角是30°,有兩條邊分別是7cm、5cm,看哪組先完成,并且小組內(nèi)是全等的。這樣既調(diào)動了學生的積極性,又便于發(fā)現(xiàn)邊角邊的識別方法。

      最后教師再用幾何畫板演示,學生進行觀察、比較后,師生共同分析、歸納出“邊角邊”這一識別方法。

      若有小組畫成邊邊角的形式,則順勢引出下面的探究活動。否則提出:若兩個三角形有兩條邊及其中一邊的對角對應相等,則這兩個三角形一定全等嗎?

      活動七:在給出的畫有 的圖上,讓學生自主探究(其中另一條邊為5cm),看畫出的三角形是否一定全等。讓學生在給出的圖上研究是為了減小探索的麻木性。

      教師用幾何畫板演示,讓學生在辨析中再次認識邊角邊。同時完成課后練習第一題。

      (三)例題教學,發(fā)揮示范功能

      例題教學是課堂教學的一個重要環(huán)節(jié),因此,如何充分地發(fā)揮好例題的教學功能是十分重要的。為此,我將充分利用好這道例題,培養(yǎng)學生有條理的`說理能力,同時,通過對例題的變式與引伸培養(yǎng)學生發(fā)散思維能力。

      首先,我將出示課本例1,并設計下列系列問題,讓學生一步一步地走向“知識獲得與應用”的理想彼岸。

      問題1: 請說說本例已知了哪些條件,還差一個什么條件,怎么辦?(讓學生學會找隱含條件)。

      問題2: 你能用“因為……根據(jù)……所以……”的表達形式說說本題的說理過程嗎?

      問題3: △ADC可以看成是由△ABC經(jīng)過怎樣的圖形變換得到的?

      在探索完上述3個問題的基礎上,對例題作如下的變式與引伸:

      △ABC與△ADC全等了,你又能得到哪些結(jié)論?連接BD交AC于O,你能說明△BOC與△DOC全等嗎?若全等,你又能得到哪些結(jié)論?

      這樣設計的目的在于體現(xiàn)“數(shù)學教學不僅僅是數(shù)學知識的教學,更重要的發(fā)展學生數(shù)學思維的教學”這一思想。

      在例題教學的基礎上,為了及時的反饋教學效果,也為提高學生知識應用的水平,達到及時鞏固的目的,我設計了如下兩個練習:

      (1) 基礎知識應用。完成教材P139練一練2。

      (2) 已知如圖:,請你添加一些適當?shù)臈l件,再根據(jù)SAS的識別方法說明兩個三角形全等。對學生進行逆向思維訓練,同時讓學生發(fā)現(xiàn)對頂角這一隱含條件。

      (四)課堂小結(jié),建立知識體系。

      (1) 本節(jié)課你有哪些收獲:重點是將研究問題的方法進行一次梳理,對邊角邊的識別方法進行一次回顧。

      (2) 你還有哪些疑問?

    《全等三角形》教案7

      1、理解、掌握兩個三角形中具有三條邊相等(簡稱為邊邊邊即SSS)

      的兩個三角形全等的判定。

      2、能應用“邊邊邊”條件判定兩個三角形全等;

      3、會作一個角等于已知角。

      “邊邊邊”的理解

      探索三角形全等的條件

      復習舊知

      1、能夠完全的兩個三角形叫做全等三角形。

      2、全等三角形的相等,對應角。

      3、三角形全等中的六個條件是,。

      二、自主學習

      閱讀課本P35-P37,完成下來問題

      1、任意畫出一個ΔABC,再畫一個ΔABC,使AB=AB,BC=BC,CA=CA。把畫好的ΔABC剪下來,放到ΔABC上,它們?nèi)葐幔?/p>

      由探究1、2得到:滿足兩個三角形的.六個條件中的一個或兩個、這兩個三角形

      重合,即,但滿足三個條件中的相等、則這兩個三角形是

      即是,因此有三邊分別相等的兩個三角形_______,簡寫成“_________”或“______”。

      在ΔABC與ΔABC中

      AB = AB

      ∵ BC=_____

      CA=______

      ∴ΔABC≌_________( )

      例1 如右圖所示的三角形鋼架中,AB = AC,AD是連接點A與BC中點D的支架。

      求證:ΔABC≌ΔACD

      證明:∵D是BC的中點

      又∵在△和△中

      AB=

      BD=_______

      AD=_______

      ∴△ABD△ACD( )

      已知∠AOB,求作:∠DOF,使∠AOB=∠DOF,要求寫出作法。

      三、

      一、選擇題

      1、要使ΔABC≌ΔDEF,則ΔABC和ΔDEF應具備的條件是( )

      A、所有的角相等B、三條邊分別對應相等

      C、面積相等 D、周長相等

      2、如圖1所示,ΔABC中,AB=AC,D、E兩點在BE上,且有AD=AE,BD=CE。

      若∠BAD=30,∠DAE=50,則∠BAC等于( )

      A、130 B、120 C、110 D、100

      圖1 圖2

      3、如圖2所示,AD與BC相交于點O,且AC=BD,AD=BC,則下列結(jié)論錯誤的是( )

      A、∠C=∠D B、OA=OD C、∠AOC=∠BOD D、ΔABC≌ΔBAD

      二、填空題

      1、如圖3,AB=AC,BD=CD,若∠B=62,則∠BAC=________。

      2、如圖4,AC=AD,BC=BD,若∠2=32,∠3=28,則∠CBE=________。

      1、如圖,點B、E、C、F在同一直線上,AB=DE,AC=DF,BE=CF,求證:AC//DF。

      2、如下圖所示,AB=CD,AE=DF,CE=BF。

     。1)ΔABE能否與ΔDCF重合?說明理由

     。2)若∠B=30,AE⊥AB,則將ΔCDF從F點沿BC平移至________點,再沿順時針方向旋轉(zhuǎn)_________才能與ΔBAE重合。

      四、

      課后反思:_______________________________________________________

     。▽嶋H課時)

    《全等三角形》教案8

      教學目標:

      1、知識目標:

      (1)掌握已知三邊畫三角形的方法;

      (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

      (3)會添加較明顯的輔助線.

      2、能力目標:

      (1)通過尺規(guī)作圖使學生得到技能的訓練;

      (2)通過公理的初步應用,初步培養(yǎng)學生的邏輯推理能力.

      3、情感目標:

      (1)在公理的形成過程中滲透:實驗、觀察、歸納;

      (2)通過變式訓練,培養(yǎng)學生“舉一反三”的學習習慣.

      教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

      教學難點:如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當?shù)姆椒ㄅ卸▋蓚三角形全等。

      教學用具:直尺,微機

      教學方法:自學輔導

      教學過程:

      1、新課引入

      投影顯示

      問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

      這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質(zhì):三角形的三個元素――三條邊。

      2、公理的獲得

      問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

      讓學生粗略地概括出邊邊邊的`公理。然后和學生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)

      公理:有三邊對應相等的兩個三角形全等。

      應用格式: (略)

      強調(diào)說明:

      (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。

      (2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

      (3)、此公理與前面學過的公理區(qū)別與聯(lián)系

      (4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

      (5)說明AAA與SSA不能判定三角形全等。

      3、公理的應用

      (1) 講解例1。學生分析完成,教師注重完成后的點評。

      例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

      求證:AD⊥BC

      分析:(設問程序)

      (1)要證AD⊥BC只要證什么?

      (2)要證∠1= 只要證什么?

      (3)要證∠1=∠2只要證什么?

      (4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?

      證明:(略)

      (2)講解例2(投影例2 )

      例2已知:如圖AB=DC,AD=BC

      求證:∠A=∠C

      (1)學生思考、分析、討論,教師巡視,適當參與討論。

      (2)找學生代表口述證明思路。

      思路1:連接BD(如圖)

      證△ABD≌△CDB(SSS)先得∠A=∠C

      思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

      (3)教師共同討論后,說明思路1較優(yōu),讓學生用思路1在練習本上寫出證明,一名學生板書,教師強調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

      例3如圖,已知AB=AC,DB=DC

      (1)若E、F、G、H分別是各邊的中點,求證:EH=FG

      (2)若AD、BC連接交于點P,問AD、BC有何關系?證明你的結(jié)論。

      學生思考、分析,適當點撥,找學生代表口述證明思路

      讓學生在練習本上寫出證明,然后選擇投影顯示。

      證明:(略)

      說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補角相等證兩直線的夾角等于 ,又是很重要的一種方法。

      例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

      求證:AC=2AE.

      證明:(略)

      學生口述證明思路,教師強調(diào)說明:“中線”條件下的常規(guī)作輔助線法。

      5、課堂小結(jié):

      (1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)

      在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。

      (2)三種方法的綜合運用

      讓學生自由表述,其它學生補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu)。

      6、布置作業(yè):

      a、書面作業(yè)P70#11、12

      b、上交作業(yè)P70#14 P71B組3

    《全等三角形》教案9

      〖教學目標〗

      ◆1、探索兩個直角三角形全等的條件.

      ◆2、掌握兩個直角三角形全等的條件(hl).

      ◆3、了解角平分線的性質(zhì):角的內(nèi)部,到角兩邊距離相等的點,在角平分線上,及其簡單應用.

      〖教學重點與難點〗

      ◆教學重點:直角三角形全等的'判定的方法“hl”.

      ◆教學難點:直角三角形判定方法的說理過程.

      〖教學過程〗

      一、創(chuàng)設情境,引入新課:

      教師演示一等腰三角形,沿底邊上高裁剪,讓同學們觀察兩個三角形是否全等?

      二、合作學習:

      1.回顧:判定兩個直角三角形全等已經(jīng)有哪些方法?

      2.有斜邊和一條直角邊對應相等的兩個三角形全等嗎?如何會全等,教師可啟發(fā)引導學生一起利用畫圖,疊合方法探索說明兩個直角三角形全等的判定方法,可充分讓學生想象。不限定方法。

      “斜邊和一條直角邊對應相等的兩個直角三角形全等(hl)。”

      教師歸納出方法后,要學生注意兩點:

      “hl”是僅適用于rt△的特殊方法。

      三、應用新知,鞏固概念

      例:已知:p是∠aob內(nèi)一點,pd⊥oa,pe ⊥ob,d,e分別是垂足,且pd=pe,則點p在∠aob的平分線上,請說明理由。

      分析:引導猜想可能存在的rt△;構(gòu)造兩個全等的rt△;要說明p在∠aob的平分線上,只要說明∠dop=∠eop

      小結(jié):角平分線的又一個性質(zhì):(判定一個點是否在一個角的平分線上的方法)

      角的內(nèi)部,到角的兩邊距離相等的點,在這個角的平分線上。

      四、學生練習,鞏固提高

      練一練:課本p82課內(nèi)練習

      五、小結(jié)回顧,反思提高

     。1)你認為有沒有其他的方法可以證明直角三角形全等(勾股定理)?

     。2)你現(xiàn)在知道的有關角平分線的知識有哪些?

      六、作業(yè):

      1.作業(yè)本2.82.課后作業(yè)

    《全等三角形》教案10

      教材分析

      《三角形全等復習課內(nèi)容》選用義務教育課程標準實驗教材《數(shù)學》(華師大版)九年級上冊,三角形全等是初中數(shù)學中重要的學習內(nèi)容之一。本套教材把三角形全等看作是三角形相似的特殊情況,同時三角形全等的概念,三角形全等的識別方法,與命題與證明,尺規(guī)作圖幾部分內(nèi)容相互聯(lián)系緊密,尤其是尺規(guī)作圖中作法的合理性和正確性的解釋依賴于全等知識。本章中三角形全等的識別方法的給出都通過同學們畫圖、討論、交流、比較得出,注重同學們實際操作能力,為培養(yǎng)同學們參與意識和創(chuàng)新意識提供了機會。

      設計理念:

      針對教材內(nèi)容和初三同學們的實際情況,組織同學們通過擺拼全等三角形和探求全等三角形的活動,讓同學們感悟到圖形全等與平移、旋轉(zhuǎn)、對稱之間的關系,并通過同學們動手操作,讓同學們掌握全等三角形的一些基本形式,在探求全等三角形的過程中,做到有的放矢。然后利用角平分線為對稱軸來畫全等三角形的方法來解決實際問題,從而達到會辨、會找、會用全等三角形知識的目的。

      教學目標:

      1、通過全等三角形的概念和識別方法的復習,讓同學們體會辨別、探尋、運用全等三角形的一般方法,體會主動實驗,探究新知的方法。

      2、培養(yǎng)同學們觀察和理解能力,幾何語言的敘述能力及運用全等知識解決實際問題的能力。

      3、在同學們操作過程中,激發(fā)同學們學習的興趣,培養(yǎng)同學們主動探索,敢于實踐的精神,培養(yǎng)同學們之間合作交流的習慣。

      教學的重點和難點

      重點:運用全等三角形的識別方法來探尋三角形以及運用全等三角形的知識解決實際問題。

      難點:運用全等三角形知識來解決實際問題。

      教學過程設計:

      一、創(chuàng)設問題情境:

      某同學把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊形狀完全相同的玻璃,那么你認為它應保留哪一塊?(教師用多媒體)

      師:請同學們先獨立思考,然后小組交流意見

      生:…………

      師:上述問題實質(zhì)是判斷三角形全等需要什么條件的問題。

      今天我們這節(jié)課來復習全等三角形。(引出課題)。

      師:識別三角形及等的方法有哪些?

      生:SAS 、 SSS、 ASA、 AAS 、 HL。

      復習回顧:練習1、將兩根鋼條AA/、BB/中點O連在一起,使AA/、BB/繞著點O自由轉(zhuǎn)動,做成一個測量工具,則A/B/的長等于內(nèi)槽寬AB,判定△OAB≌△OA/B/現(xiàn)由( )

      練習2、已知AB//DE,且AB=DE,

     。1)請你只添加一個條件,使△ABC≌△DEF,

      你添加的條件是

      (2)添加條件后,證明△ABC≌△DEF?

      [根據(jù)不同的添加條件,要求同學們能夠敘述三角形全等的條件和全等的現(xiàn)由,鼓勵同學們大膽的表述意見]

      二、探求新知:

      師:請同學們將兩張紙疊起來,剪下兩個全等三角形,然后將疊合的兩個三角形紙片放在桌面上,從平移、旋轉(zhuǎn)、對稱幾個方面進行擺放,看看兩個三角形有一些怎樣的特殊位置關系?

      請同組合作,交流,并把有代表性的擺放進行投影。

      熟記全等三角形的基本形式,為探求全等三角形打下基礎,提醒同學們注意兩個全等三角形的對應邊和對應角。同學們的擺放形式很多,包括那些平時數(shù)學成績不好的同學們也躍躍欲試,教師給予肯定和鼓勵激發(fā)他們學習的積極性和主動性。

      例1、如圖一張矩形紙片沿著對角線剪開,得到兩張三角形紙片ABC、DEF,再將這兩張三角形紙片擺成右圖的形式,使點B、F、C、D處在同一條直線上,P、M、N為其他直線的交點。

     。1)求證:AB⊥ED

      (2)若PB=BC,請找出右圖中全等三角形,并給予證明。

      用多媒體演示圖形的變化過程。

      師:圖3中AB與ED有怎樣的位置關系?同同學們猜想一下結(jié)果。

      生甲:AB垂直ED

      師:為什么?可以從幾方面來考慮?

      生乙:可以從圖形運動變化的過程來考慮

      生丙:可以考慮全等在已知條件下,顯然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

     。ǜ鶕(jù)同學們的回答,教師板演)

      師:若PB=BC,找出右圖中全等三角形,看看誰能找得最快?

      生。骸鱌BD≌△CBA(ASA)

      師:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

      師:還有其他三角形全等嗎?

      生:有,我連接BN,由勾股定理得PN=CN,就不難得到△APN≌△DCN。

     。ㄔ阱e綜復雜的圖形中尋找全等三角形是一件不容易的事,要鼓勵同學們大膽的猜想,努力探求,在同學們的敘述過程中,教師及時糾正同學們敘述中的錯誤,訓練同學們嚴謹?shù)膶W習態(tài)度和學習習慣。)

      例2、(動手畫)(1)已知OP為∠AOB平分線,請你利用該圖畫一對以OP所在直線為對稱軸的全等三角形。

      教師在黑板上畫好∠AOB和直線OP,同學們獨立思考,然后請幾個同學們在黑板上演示。

      師生總結(jié):想要畫出符合條件的三角形,只要在射線OA、OB上找到一對關于OP對稱的點就可以了。

     。2)利用上圖作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分線,AD、CE相交于F,請判斷FE與FD間數(shù)量關系。

      師:請同學們用三角尺和量角器準確畫出此圖,然后量出EF、FD的長度,看看EF與FD長度

      關系如何?

      生:基本相等。

      生:長度相等。

      師:如何來證明他們相等?注意審題。

      同學們先獨立思考后,組內(nèi)交流,等到有同學舉手發(fā)言。

      生:在AC上取點H,使AH=AE,則△AEF≌△AHF則EF=FH

      師:為什么要這么做?你是怎么想到的?

      生:因為要證明線段相等要考慮三角形全等,而EF、FD所在兩個三角形顯然不全等,又AD是平分線,在AC上找出E關于AD有對稱點H得到△AEF≌△AHF。

      師:這樣只能得到EF=FH。

      生:再證明△FHC≌△FDC。

      生:先求出AD、CE是角平分線∠APC=1200,則∠DPC=∠EPA=∠APH=600,所以∠HPC=

      ∠DPC=600,PC=PC,∠3=∠4,因為△HCP≌△DCP(ASA)所以PD=PH。

     。ǹ辞孱}意,猜想結(jié)果是解決探究題的重要環(huán)節(jié),教師要留給同學們一定思考時間,同時鼓勵同學們嘗試和交流,鼓勵同學們勇于探索以及同學之間的合作。)

      師生共同小結(jié):

      1、熟記全等三角形的'基本形態(tài),會找全等三角形的對應邊和對應角。

      2、在錯綜復雜的幾何圖形中能夠?qū)ふ胰热切巍?/p>

      3、利用角平分線的對稱性構(gòu)造三角形全等,并利用三角形的全等性質(zhì)解決線段之間的等量關系。

      4、運用全等三角形的識別法可以解決很多生活實際問題。

      作業(yè)

      1、在例2中,如果∠ACB不是直角,而(1)中的其他條件不變,請問:你在(1)中所得結(jié)論能成立嗎?若成立,請證明,若不成立,請說明理由。

      2、書本課后復習題

      教學反思

      本教學設計從以下三方面考慮:

      1、根據(jù)同學們的學習情況,改進同學們的學習方式,強調(diào)合作交流,探索學習,教師在教學過程中,努力為同學們創(chuàng)設自主探索的氛圍,讓同學們真正成為課堂主體。

      2、重視對同學們能力的培養(yǎng),除常規(guī)的鼓勵就大膽思考,積極發(fā)言,重視培養(yǎng)同學們觀察、操作、測試、思考的能力,同學們的活躍,他們思考問題的方式是多種多樣,教師從對完全更改,尊重他們的學習方式,這樣有助于創(chuàng)新

      3、重視對同學們學習習慣的培養(yǎng),全等三角形是幾何部分內(nèi)容說明書,有較強邏輯性,教師板演,以及在同學們敘述中糾正同學們的錯誤,是培養(yǎng)同學們養(yǎng)成良好的習慣之一,同時同學們學習習慣多方面的,在合作交流中,培養(yǎng)同學們合作意識和合作習慣培養(yǎng)顯得尤為重要。

    《全等三角形》教案11

      課程內(nèi)容

      邊邊邊判定定理

      選用教材

      人教版數(shù)學八年級上冊

      授課人

      崔志偉

      授課章節(jié)

      第十二章第二節(jié)

      學 時

      1

      教學重點

      掌握全等三角形的判定定理邊邊邊,能運用該定理解決實際問題。

      教學難點

      探索三角形全等的條件,以及運用邊邊邊定理畫一角等于已知角

      教學方法

      學生合作探究法、教師講解結(jié)合談話法等綜合教學方法

      教學手段

      黑板板書教學

      課 堂 教 學 設 計

      階段

      教學內(nèi)容

      導入部分

      采用復習導入,教師首先提問學生回顧全等三角形的定義,以及全等三角形的性質(zhì)。

      學生在復習以上知識的條件下教師做出解釋,上節(jié)課我們已經(jīng)學習了三角形在滿足三邊對應相等,三角對應相等,則兩三角形全等,那么在實際的運用過程中,需要這么多條件運用會很不方便,那么我們很容易想到,能不能簡化條件,得出三角形全等呢?由此引出課題全等三角形的判定。

      階段

      課堂教學設計

      課程新授

      教師讓學生大膽想象,可以從一組對應關系相等開始探究,逐步上升到兩組對應關系相等三組對應關系相等。

      但是為了節(jié)約時間,可以讓學生從兩組開始,如若兩組都不行,那一組肯定也不行,反之如若兩組條件就足夠了,再回頭看看一組的情況。

      接下來學生在教師的提問下思考二組對應條件的所有可能的情況,預設會有思考不全面的同學,教師即使揭示在一組邊與一組角相等的情況下,邊與角的關系可以為相鄰,也有可能為相對。

      學生在教師的提示下,探索發(fā)現(xiàn)滿足兩組對應關系相等的三角形不一定全等,由此可以斷定一組對應關系相等也不能作為判定三角形全等的條件。接下來直接考慮三組對應相等關系的.情況。

      首先引導學生對三組對應關系相等進行分類。

      預設學生部分可以全部考慮到,部分學生考慮不周到,這時教師可以請會的同學展示被同學忽略的情況即兩組角與一組對邊對應相等時,邊可以為對邊,也可以為鄰邊。

      本節(jié)課將引導學生探索三邊相等的情形,有了前面兩組對應相等的經(jīng)驗,預設學生根據(jù)尺規(guī)作圖可以畫出三邊等于已知三角形的三角形,接下來通過三角形全等的定義,讓學生動手操作進行驗證,發(fā)現(xiàn)可以完全重合,由此我們得到三組邊對應相等的三角形全等。即SSS,教師解釋S為英文邊,side的首字母。

      接下來請同學說出已知三角形與所作三角形之間存在的對應相等關系,預設學生可以很輕易說出。

      由此教師揭示,實際上我們還學回了一個做角等于一只角的另外一種做法,即運用尺規(guī)作圖畫一角等于已知角。接下來,教師稍作解釋,請學生探究討論作圖步驟。看誰的最簡便。

      學生探索過后,教師請學生回答自己的作圖步驟,最后由教師板書最簡易的作圖步驟。

      之后我將用練習的方式,加深同學對邊邊邊判定定理的理解并加強應用能力。

      作業(yè)

      作業(yè)為書上的練習第二題,以及課后作業(yè)的第四題對應基礎性練習即鞏固性練習。

      板書設計

      采用歸納式的板書設計,主要板書兩種即三種對應關系相等的種類,邊邊邊判定定理的內(nèi)容以及畫一角等于已知角的步驟以及重要練習的過程。

      小結(jié)

      本結(jié)課內(nèi)容比較多,主要體現(xiàn)在全等三角形判定的探索過程,為了節(jié)約時間,我選擇讓學生直接從兩個條件開始探究,同時也不影響學生理解,教師主要以引導為主,學生自主探索學習。

    《全等三角形》教案12

      一、教材分析

      本節(jié)課的教學內(nèi)容是人教版數(shù)學八年級上冊第十一章 《全等三角形》的第一節(jié).這是全章的開篇,也是全等條件的基礎.它是繼線段、角、相交線與平行線及三角形有關知識之后出現(xiàn)的通過本節(jié)的學習,可以豐富和加深學生對已學圖形的認識,同時為學習其他圖形知識打好基礎,具有承上啟下的作用.

      教材根據(jù)初中學生的認知規(guī)律和特點,采用由淺入深、由易到難、抓聯(lián)系、促遷移的方法.通過生活中的實例創(chuàng)設情景,形成概念,再通過平移、翻折、旋轉(zhuǎn)說明變換前后的兩個三角形全等,進而得出全等三角形的相關概念及其性質(zhì).

      二、教學目標分析

      知識與技能

      1.了解全等三角形的概念,通過動手操作,體會平移、翻折、旋轉(zhuǎn)是考察兩三角形全等的主要方法.

      2.能準確確定全等三角形的對應元素.

      3.掌握全等三角形的性質(zhì).

      過程與方法

      1.通過找出全等三角形的對應元素,培養(yǎng)學生的識圖能力.

      2.能利用全等三角形的概念、性質(zhì)解決簡單的數(shù)學問題.

      情感、態(tài)度與價值觀

      通過構(gòu)建和諧的課堂教學氛圍,激發(fā)學生的學習興趣,調(diào)動學生的學習積極性,使學生勇于提出問題,樂于探索問題,同時注重培養(yǎng)學生善于合作交流的良好情感和積極向上的學習態(tài)度.

      三、教學重點、難點

      重點:全等三角形的概念、性質(zhì)及對應元素的確定.

      難點:全等三角形對應元素的確定.

      四、學情分析

      學生在七年級時已經(jīng)學過線段、角、相交線與平行線及三角形的有關知識,并學習了一些簡單的說理,已初步具有對簡單圖形的分析和辨識能力,但八年級的學生仍處于以形象思維為主要思維形式的時期.為了發(fā)展學生的空間觀念,培養(yǎng)學生的抽象思維能力,本節(jié)課將充分利用動畫演示,來揭示圖形的平移、翻折和旋轉(zhuǎn)等變換過程,以便讓學生在觀察、分析中獲得大量的感性認識,進而達到對全等三角形的理性認識.

      五、教法與學法

      本節(jié)課堅持“教與學、知識與能力的辯證統(tǒng)一”和“人人都能獲得必需的數(shù)學”的原則,博采啟發(fā)教學法、引探教學法、講授教學法等諸多方法之長,借助多媒體手段引導學生觀察、猜想和探究,促進學生自主學習,努力做到教與學的最優(yōu)組合.

      六、教學教程

     、.課題引入

      1.電腦顯示

      問題:各組圖形的形狀與大小有什么特點?

      一般學生都能發(fā)現(xiàn)這兩個圖形是完全重合的。

      歸納:能夠完全重合的兩個圖形叫做全等形。

      2.學生動手操作

     、旁诩埌迳先我猱嬕粋三角形ABC,并剪下,然后說出三角形的三個角、三條邊和每個角的對邊、每個邊的對角。

     、茊栴}:如何在另一張紙板再剪一個三角形DEF,使它與△ABC全等?

      (學生分組討論、提出方法、動手操作)

      3.板書課題:全等三角形

      定義:能夠完全重合的兩個三角形叫做全等三角形

      “全等”用“≌”表示,讀著“全等于”

      如圖中的兩個三角形全等,記作:△ABC≌△DEF

     、.全等三角形中的對應元素

      1. 問題:你手中的兩個三角形是全等的,但是如果任意擺放能重合嗎?該怎樣做它們才能重合呢?

      2.學生討論、交流、歸納得出:

     、.兩個全等三角形任意擺放時,并不一定能完全重合,只有當把相同的角重合到一起(或相同的邊重合到一起)時它們才能完全重合。這時我們把重合在一起的`頂點、角、邊分別稱為對應頂點、對應角、對應邊。

     、.表示兩個全等三角形時,通常把表示對應頂點字母寫在對應的位置上,這樣便于確定兩個三角形的對應關系。

     、. 全等三角形的性質(zhì)

      1.觀察與思考:

      尋找甲圖中兩三角形的對應元素,它們的對應邊

      有什么關系?對應角呢?

      (引導學生從全等三角形可以完全重合出發(fā)找等量關系)

      全等三角形的性質(zhì):

      全等三角形的對應邊相等.

      全等三角形的對應角相等.

      2.用幾何語言表示全等三角形的性質(zhì)

      如圖:∵ABC≌ DEF

      ∴AB=DE,AC=DF,BC=EF

      (全等三角形對應邊相等)

      ∠A=∠D,∠B=∠E,∠C=∠F

      (全等三角形對應角相等)

     、.探求全等三角形對應元素的找法

      1.動畫(幾何畫板)演示

      (1).圖中的各對三角形是全等三角形,怎樣改變其中一個三角形的位置,使它能與另一個三角形完全重合?

      歸納:兩個全等的三角形經(jīng)過一定的轉(zhuǎn)換可以重合.一般是平移、翻折、旋轉(zhuǎn)的方法.

      (2).說出每個圖中各對全等三角形的對應邊、對應角

      歸納:從運動的角度可以很輕松地解決找對應元素的問題.可見圖形轉(zhuǎn)換的奇妙.

      3. 歸納:找對應元素的常用方法有兩種:

      (1)從運動角度看

      a.翻折法:一個三角形沿某條直線翻折與另一個三角形重合,從而發(fā)現(xiàn)對應元素.

      b.旋轉(zhuǎn)法:三角形繞某一點旋轉(zhuǎn)一定角度能與另一三角形重合,從而發(fā)現(xiàn)對應元素.

      c.平移法:沿某一方向推移使兩三角形重合來找對應元素.

      (2)根據(jù)位置元素來推理

      a.有公共邊的,公共邊是對應邊;

      b.有公共角的,公共角是對應角;

      c.有對頂角的,對頂角是對應角;

      d.兩個全等三角形最大的邊是對應邊,最小的邊也是對應邊;

      e.兩個全等三角形最大的角是對應角,最小的角也是對應角;

      Ⅴ.課堂練習

      練習1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,

      你能得出△ACE中哪些角的大小,哪些邊的長度嗎?為什么 ?

      練習2.△ABC≌△FED

     、艑懗鰣D中相等的線段,相等的角;

     、茍D中線段除相等外,還有什么關系嗎?請與同伴交

      流并寫出來.

      Ⅵ.小結(jié)

      1.這節(jié)課你學會了什么?有哪些收獲?有什么感受?

      2.通過本節(jié)課學習,我們了解了全等的概念,發(fā)現(xiàn)了全等三角形的性質(zhì),并且利用一些方法可以找到兩個全等三角形的對應元素.這也是這節(jié)課大家要重點掌握的

     、.作業(yè)

      課本第92頁1、2、3題

    《全等三角形》教案13

      教學目標

      一、知識與技能

      1、了解全等形和全等三角形的概念,掌握全等三角形的性質(zhì)。

      2、能正確表示兩個全等三角形,能找出全等三角形的對應元素。

      二、過程與方法

      通過觀察、拼圖以及三角形的平移、旋轉(zhuǎn)和翻折等活動,來感知兩個三角形全等,以及全等三角形的性質(zhì)。

      三、情感態(tài)度與價值觀

      通過全等形和全等三角形的學習,認識和熟悉生活中的全等圖形,認識生活和數(shù)學的關系,激發(fā)學生學習數(shù)學的興趣。

      教學重點

      1、全等三角形的性質(zhì)。

      2、在通過觀察、實際操作來感知全等形和全等三角形的基礎上,形成理性認識,理解并掌握全等三角形的對應邊相等,對應角相等。

      教學難點正確尋找全等三角形的對應元素

      教學關鍵通過拼圖、對三角形進行平移、旋轉(zhuǎn)、翻折等活動,讓學生在動手操作的過程中,感知全等三角形圖形變換中的對應元素的變化規(guī)律,以尋找全等三角形的對應點、對應邊、對應角。

      課前準備:教師------課件、三角板、一對全等三角形硬紙版 學生------白紙一張硬紙三角形一個

      教學過程設計

      一、 全等形和全等三角形的概念

      (一)導課:教師----(演示課件)廬山風景,以詩"橫看成嶺側(cè)成峰,遠近高低各不同,不識廬山真面目,只緣身在此山中"指出大自然中廬山的唯一性,但是我們可以通過攝影把廬山的美景拍下來,可以洗出千萬張一模一樣的廬山相片。

      (二)全等形的定義

      象這樣的圖片,形狀和大小都相同。你還能說一說自己身邊還有哪些形狀和大小都相同的圖形嗎?[學生舉例,集體評析]

      動手操作1---在白紙上任意撕一個圖形,觀察這個圖形和紙上的空心部分的圖形有什么關系?你怎么知道的?

      [板書:能夠完全重合]

      命名:給這樣的圖形起個名稱----全等形。[板書:全等形]

      剛才大家所舉的各種各樣的形狀大小都相同的圖形,放在一起也能夠完全重合,這樣的圖形也都是全等形。

      (三)全等三角形的定義

      動手操作2---制作一個和自己手里的三角形能夠完全重合的三角形。

      定義全等三角形:能夠完全重合的兩個三角形,叫全等三角形。

      [板書課題:13.1全等三角形,]

      (四)出示學習目標

      1. 知道什么是全等形,什么是全等三角形。

      2. 能夠找出全等三角形的對應元素。

      3.會正確表示兩個全等三角形。

      4.掌握全等三角形的.性質(zhì)。

      二、 全等三角形的對應元素及表示

      (一)自學課本:91頁的 內(nèi)容(時間5分鐘)可以在小組內(nèi)交流。

      (二)檢測:

      1.動手操作

      以課本p91頁的思考的操作步驟,抽三個學生上黑板完成(即把三角形平移、翻折、旋轉(zhuǎn)后得到新的三角形)

      思考:把三角形平移、翻折、旋轉(zhuǎn)后,什么發(fā)生了變化,什么沒有變?

      歸納:旋轉(zhuǎn)前后的兩個三角形,位置變化了,但形狀大小都沒有變,它們依然全等。

      2.全等三角形中的對應元素

      (以黑板上的圖形為例,圖一、圖二、三學生獨立找,集體交流)

      (1)對應的頂點(三個)---重合的頂點

      (2)對應邊(三條)---重合的邊

      (3)對應角(三個)--- 重合的角

      圖一(平移)

      圖二 (翻折)圖三(旋轉(zhuǎn))

      歸納:方法一---全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;方法二:全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角。

      另外:有公共邊的,公共邊一定是對應邊;有對頂角的,對頂角一定是對應角。

      3.用符號表示全等三角形

      抽學生表示圖一、圖二、三的全等三角形。

      4.全等三角形的性質(zhì)

      思考:全等三角形的對應邊、對應角有什么關系?為什么?

      歸納:全等三角形的對應邊相等、對應角相等。

      請寫出平移、翻折后兩個全等三角形中相等的角,相等的邊。

      三、 課堂訓練

      1.下面的每對三角形分別全等,觀察是怎么變化而成的,說出對應邊、對應角。

      2.將△abc沿直線bc平移,得到△def(如圖)

      (1) 線段ab、de是對應線段,有什么關系?線段ac和df呢?

      (2) 線段be和cf有什么關系?為什么?

      (3)若∠a=50?,∠b=30?,你知道其他各角的度數(shù)嗎?為什么?

      3.議一議:△abe≌△acd,ab與ac,ad與ae是對應邊,∠a=40?,∠b=30?,求∠adc的大小。

      四、小結(jié):學生填寫《課堂學習評價卡》并交流。

      五、作業(yè):課本92頁習題13.1第2題、3題、4題。

      板書設計:全等三角形對應元素

      全等形全等三角形全等三角形性質(zhì)

    《全等三角形》教案14

      教學目標

      一、知識與技能

      1、了解全等形和全等三角形的概念,掌握全等三角形的性質(zhì)。

      2、能正確表示兩個全等三角形,能找出全等三角形的對應元素。

      二、過程與方法

      通過觀察、拼圖以及三角形的平移、旋轉(zhuǎn)和翻折等活動,來感知兩個三角形全等,以及全等三角形的性質(zhì)。

      三、情感態(tài)度與價值觀

      通過全等形和全等三角形的學習,認識和熟悉生活中的全等圖形,認識生活和數(shù)學的關系,激發(fā)學生學習數(shù)學的興趣。

      教學重點

      1、全等三角形的性質(zhì)。

      2、在通過觀察、實際操作來感知全等形和全等三角形的基礎上,形成理性認識,理解并掌握全等三角形的對應邊相等,對應角相等。 教學難點 正確尋找全等三角形的對應元素。

      教學關鍵

      通過拼圖、對三角形進行平移、旋轉(zhuǎn)、翻折等活動,讓學生在動手操作的過程中,感知全等三角形圖形變換中的對應元素的變化規(guī)律,以尋找全等三角形的對應點、對應邊、對應角。

      課前準備: 教師——————課件、三角板、一對全等三角形硬紙版學生——————白紙一張、硬紙三角形一個

      教學過程設計

      一、全等形和全等三角形的概念

     。ㄒ唬⿲дn:

      教師————(演示課件)廬山風景,以詩“橫看成嶺側(cè)成峰,遠近高低各不同,不識廬山真面目,只緣身在此山中”指出大自然中廬山的唯一性,但是我們可以通過攝影把廬山的美景拍下來,可以洗出千萬張一模一樣的廬山相片。

     。ǘ┤刃蔚亩x

      象這樣的圖片,形狀和大小都相同。你還能說一說自己身邊還有哪些形狀和大小都相同的圖形嗎?[學生舉例,集體評析]

      動手操作1———在白紙上任意撕一個圖形,觀察這個圖形和紙上的空心部分的圖形有什么關系?你怎么知道的? [板書:能夠完全重合]

      命名:給這樣的圖形起個名稱————全等形。[板書:全等形]

      剛才大家所舉的各種各樣的形狀大小都相同的圖形,放在一起也能夠完全重合,這樣的圖形也都是全等形。

      (三)全等三角形的定義

      動手操作2———制作一個和自己手里的三角形能夠完全重合的三角形。 定義全等三角形:能夠完全重合的兩個三角形,叫全等三角形。

     。ㄋ模┏鍪緦W習目標

      1、 知道什么是全等形,什么是全等三角形。

      2、 能夠找出全等三角形的對應元素。

      3、會正確表示兩個全等三角形。

      4、掌握全等三角形的性質(zhì)。

      二、全等三角形的對應元素及表示

     。ㄒ唬┳詫W課本:第1節(jié)內(nèi)容(時間5分鐘)可以在小組內(nèi)交流。

      (二)檢測:

      1、動手操作

      以課本P91頁的思考的操作步驟,抽三個學生上黑板完成(即把三角形平移、翻折、旋轉(zhuǎn)后得到新的三角形)

      思考:把三角形平移、翻折、旋轉(zhuǎn)后,什么發(fā)生了變化,什么沒有變?

      歸納:旋轉(zhuǎn)前后的兩個三角形,位置變化了,但形狀大小都沒有變,它們依然全等。

      2、全等三角形中的對應元素

     。ㄒ院诎迳系膱D形為例,圖一、圖二、三學生獨立找,集體交流)

      (1)對應的頂點(三個)———重合的頂點

     。2)對應邊(三條)———重合的'邊

     。3)對應角(三個)——— 重合的角

      歸納:

      方法一:全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;

      方法二:全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角。 另外:有公共邊的,公共邊一定是對應邊;有對頂角的,對頂角一定是對應角。

      3、用符號表示全等三角形

      抽學生表示圖一、圖二、三的全等三角形。

      4、全等三角形的性質(zhì)

      思考:全等三角形的對應邊、對應角有什么關系?為什么?

      歸納:全等三角形的對應邊相等、對應角相等。

      請寫出平移、翻折后兩個全等三角形中相等的角,相等的邊。

    《全等三角形》教案15

      教學目標:

      1了解全等形及全等三角形的的概念;

      2 理解全等三角形的性質(zhì)

      3 在圖形變換以及實際操作的過程中發(fā)展學生的空間觀念,培養(yǎng)學生的幾何直覺,

      重點:探究全等三角形的性質(zhì)

      難點:準確的找出兩個全等三角形的`對應邊,對應角

      教學過程:觀察圖案,指出這些圖案中中形狀與大小相同的圖形。

      獲取概念:全等形、全等三角形、對應邊、對應角、對應頂點 。

      全等形:形狀、大小相同的圖形放在一起能夠完全重合,能夠完全重合的

      兩個圖形叫做全等形。

      一個圖形經(jīng)過平移、翻折、旋轉(zhuǎn)后,位置變化了,但形狀、大小都沒有改變,即平移、翻折、旋轉(zhuǎn)前后的圖形全等。

      全等三角形:能夠完全重合的兩個三角形叫做全等三角形。

      “全等”用?表示,讀作“全等于”

      注意:兩個三角形全等時,通常把表示對應頂點的字母寫在對應的位置上,如△ abc ≌ △def全等時,點a和點d,點b和點e,點c和點f是對應頂點,記作△ abc ≌ △def

      把兩個全等的三角形重合到一起,重合的頂點叫做對應頂點,重合的邊叫做對應邊,重合的角叫做對應角。通過練習得出對應邊,對應角間的關系。

      即全等三角形性質(zhì):全等三角形的對應邊相等;

      全等三角形的對應角相等。

      練習1.2.3.4

      小結(jié):形狀、大小相同的圖形放在一起能夠完全重合,能夠完全重合的兩個圖

      形叫做全等形。能夠完全重合的兩個三角形叫做全等三角形。

      全等三角形性質(zhì):全等三角形的對應邊相等;

      全等三角形的對應角相等。

      表示三角形全等時應注意什么?

    《全等三角形》教案16

      【教學目標】

      知識與技能:理解三角形全等的“邊角邊”的條件.掌握三角形全等的“SAS”條件,了解三角形的穩(wěn)定性.能運用“SAS”證明簡單的三角形全等問題.

      過程與方法:經(jīng)歷探究全等三角形條件的過程,體會利用操作、歸納獲得數(shù)學規(guī)律的過程.掌握三角形全等的“邊角邊”條件.在探索全等三角形條件及其運用過程中,培養(yǎng)有條理分析、推理,并進行簡單的證明.

      情感態(tài)度與價值觀:通過畫圖、思考、探究來激發(fā)學生學習的積極性和主動性,并使學生了解一些研究問題的經(jīng)驗和方法,開拓實踐能力與創(chuàng)新精神.

      教學重點:三角形全等的條件.

      教學難點:尋求三角形全等的條件.

      教學方法:采用啟發(fā)誘導,實例探究,講練結(jié)合,小組合作等方法。

      學情分析:這節(jié)課是學了全等三角形的邊邊邊后的一節(jié)課、將中間的邊變?yōu)榻翘接、學生一定能理解,根據(jù)之前的學情、學好這一節(jié)課有把握。

      課前準備:全等三角形紙片、三角板、

      【教學過程】:

      一、創(chuàng)設情境,導入新課

      [師]在上節(jié)課的討論中,我們發(fā)現(xiàn)三角形中只給一個條件或兩個條件時,都不能保證所畫出的三角形一定全等.給出三個條件時,有四種可能,能說出是哪四種嗎?

      [生]三內(nèi)角、三條邊、兩邊一內(nèi)角、兩內(nèi)角一邊.

      [師]很好,這四種情況中我們已經(jīng)研究了兩種,三內(nèi)角對應相等不能保證兩三角形一定全等;三條邊對應相等的兩三角形全等.今天我們接著研究第三種情況:“兩邊一內(nèi)角”.

      (一)問題:如果已知一個三角形的兩邊及一內(nèi)角,那么它有幾種可能情況?

      [生]兩種.

      1.兩邊及其夾角.

      2.兩邊及一邊的對角.

      [師]按照上節(jié)方法,我們有兩個問題需要探究.

      (二)探究1:先畫一個任意△ABC,再畫出一個△A/B/C/,使AB=A/B/、AC=A/C/、∠A=∠A/(即保證兩邊和它們的夾角對應相等).把畫好的三角形A/B/C/剪下,放到△ABC上,它們?nèi)葐?

      探究2:先畫一個任意△ABC,再畫出△A/B/C/,使AB=A/B/、AC=A/C/、∠B=∠B/(即保證兩邊和其中一邊的對角對應相等).把畫好的△A/B/C/剪下,放到△ABC上,它們?nèi)葐?

      學生活動:

      1.學生自己動手,利用直尺、三角尺、量角器等工具畫出△ABC與△A/B/C/,將△A/B/C/剪下,與△ABC重疊,比較結(jié)果.

      2.作好圖后,與同伴交流作圖心得,討論發(fā)現(xiàn)什么樣的規(guī)律.

      教師活動:

      教師可學生作完圖后,由一個學生口述作圖方法,教師進行多媒體播放畫圖過程,再次體會探究全等三角形條件的過程.

      二、探究

      操作結(jié)果展示:

      對于探究1:

      畫一個△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.

      1.畫∠DA/E=∠A;

      2.在射線A/D上截取A/B/=AB.在射線A/E上截取A/C/=AC;

      3.連結(jié)B/C/.

      將△A/B/C/剪下,發(fā)現(xiàn)△ABC與△A/B/C/全等.這就是說:兩邊和它們的夾角對應相等的兩個三角形全等(可以簡寫為“邊角邊”或“SAS”).

      小結(jié):兩邊和它們的夾角對應角相等的兩個三角形全等.簡稱“邊角邊”和“SAS”.

      如圖,在△ABC和△DEF中,

      對于探究2:

      學生畫出的圖形各式各樣,有的.說全等,有的說不全等.教師在此可引導學生總結(jié)畫圖方法:

      1.畫∠DB/E=∠B;

      2.在射線B/D上截取B/A/=BA;

      3.以A/為圓心,以AC長為半徑畫弧,此時只要∠C≠90°,弧線一定和射線B/E交于兩點C/、F,也就是說可以得到兩個三角形滿足條件,而兩個三角形是不可能同時和△ABC全等的

      也就是說:兩邊及其中一邊的對角對應相等的兩個三角形不一定全等.所以它不能作為判定兩三角形全等的條件.

      歸納總結(jié):

      “兩邊及一內(nèi)角”中的兩種情況只有一種情況能判定三角形全等.即:

      兩邊及其夾角對應相等的兩個三角形全等.(簡記為“邊角邊”或“SAS”)

      三、應用舉例

      [例]如圖,有一池塘,要測池塘兩端A、B的距離,可先在平地上取一個可以直接到達A和B的點C,連結(jié)AC并延長到D,使CD=CA.連結(jié)BC并延長到E,使CE=CB.連結(jié)DE,那么量出DE的長就是A、B的距離.為什么?

      [師生共析]如果能證明△ABC≌△DEC,就可以得出AB=DE.

      在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC與△DEC就全等了.而∠1和∠2是對頂角,所以它們相等.

      證明:在△ABC和△DEC中

      所以△ABC≌△DEC(SAS)

      所以AB=DE.

      1.填空:

      (1)如圖3,已知AD‖BC,AD=CB,要用邊角邊公理證明△ABC≌△CDA,需要三個條件,這三個條件中,已具有兩個條件,一是AD=CB(已知),二是___________;還需要一個條件_____________(這個條件可以證得嗎?).

      (2)如圖4,已知AB=AC,AD=AE,∠1=∠2,要用邊角邊公理證明△ABD≌ACE,需要滿足的三個條件中,已具有兩個條件:_________________________(這個條件可以證得嗎?).

      四、練習

      1.已知:AD‖BC,AD=CB(圖3).

      求證:△ADC≌△CBA.

      2.已知:AB=AC、AD=AE、∠1=∠2(圖4).

      求證:△ABD≌△ACE.

      五、課堂小結(jié)

      1.根據(jù)邊角邊公理判定兩個三角形全等,要找出兩邊及夾角對應相等的三個條件.

      2.找使結(jié)論成立所需條件,要充分利用已知條件(包括給出圖形中的隱含條件,如公共邊、公共角等),并要善于運用學過的定義、公理、定理.

      六、布置作業(yè)

      必做題:課本P43——44頁習題12.2中的第3,選做題:第4題題

      七、板書設計

      教學反思

      本節(jié)課的教學過程是:首先,展示教材上的圖案以及制作的一些圖案,引導學生讀圖,激發(fā)學生興趣,從圖中去發(fā)現(xiàn)有形狀與大小完全相同的圖形。然后教師安排學生自己動手隨意去做兩個形狀與大小相同的圖形,通過動手實踐,合作交流,直觀感知全等形和全等三角形的概念。其次,通過閱讀法讓學生找出全等形和全等三角形的概念。然后,教師隨即演示一個三角形經(jīng)平移,翻折,旋轉(zhuǎn)后構(gòu)成的兩個三角形全等。通過教具演示讓學生體會對應頂點、對應邊、對應角的概念,并以找朋友的形式在練習中指出對應頂點、對應邊、對應角,加強對對應元素的熟練程度。

      此時給出全等三角形的表示方法,提示對應頂點,寫在對應的位置,然后再給出用全等符號表示全等三角形練習,加強對知識的鞏固,再給出練習判斷哪一種表示全等三角形的方法正確,通過對圖形及文字語言的綜合閱讀,由此去理解“對應頂點寫在對應的位置上”的含義。

      再次,通過學生對全等三角形紙板的觀察,小組討論,合作交流,觀察對應邊、對應角有何關系,從而得出全等三角形的性質(zhì)。并通過練習來理解全等三角形的性質(zhì)并滲透符號語言推理。最后教師小結(jié),這節(jié)課我們知道了什么是全等形、全等三角形,學會了用全等符號表示全等三角形,會用全等三角形的性質(zhì)解決一些簡單的實際問題。

    《全等三角形》教案17

      【教學目標】

      1、使學生理解邊邊邊公理的內(nèi)容,能運用邊邊邊公理證明三角形全等,為證明線段相等或角相等創(chuàng)造條件;

      2、繼續(xù)培養(yǎng)學生畫圖、實驗,發(fā)現(xiàn)新知識的能力。

      【重點難點】

      1、難點:讓學生掌握邊邊邊公理的內(nèi)容和運用公理的自覺性;

      2、重點:靈活運用SSS判定兩個三角形是否全等。

      【教學過程】

      一、創(chuàng)設問題情境,引入新課

      請問同學,老師在黑板上畫得兩個三角形,△ ABC與△全等嗎?你是如何判定的。

      (同學們各抒己見,如:動手用紙剪下一個三角形,剪下疊到另一個三角形上,是否完全重合;測量兩個三角形的所有邊與角,觀察是否有三條邊對應相等,三個角對應相等。)

      上一節(jié)課我們已經(jīng)探討兩個三角形只滿足一個或兩個邊、角對應相等條件時,兩個三角形不一定全等。滿足三個條件時,兩個三角形是否全等呢?現(xiàn)在,我們就一起來探討研究。

      二、實踐探索,總結(jié)規(guī)律

      1、問題1:如果兩個三角形的三條邊分別相等,那么這兩個三角形會全等嗎?做一做:給你三條線段,分別為xx、xx、xx,你能畫出這個三角形嗎?

      先請幾位同學說說畫圖思路后,教師指導,同學們動手畫,教師演示并敘述書寫出步驟。

      步驟:

      (1)畫一線段AB使它的長度等于c(4.8cm)。

     。2)以點A為圓心,以線段b(3cm)的長為半徑畫圓弧;以點B為圓心,以線段a(4cm)的長為半徑畫圓;兩弧交于點C。

     。3)連結(jié)AC、BC。

      △ABC即為所求

      把你畫的三角形與其他同學的圖形疊合在一起,你們會發(fā)現(xiàn)什么?

      換三條線段,再試試看,是否有同樣的結(jié)論

      請你結(jié)合畫圖、對比,說說你發(fā)現(xiàn)什么?

      同學們各抒己見,教師總結(jié):給定三條線段,如果它們能組成三角形,那么所畫的'三角形都是全等的。這樣我們就得到判定三角形全等的一種簡便的方法:如果兩個三角形的三條邊分別對應相等,那么這兩個三角形全等.簡寫為“邊邊邊”,或簡記為(SSS)。

      2、問題2:你能用相似三角形的判定法解釋這個(SSS)三角形全等的判定法嗎?

     。ㄎ覀円呀(jīng)知道,三條邊對應成比例的兩個三角形相似,而相似比為1時,三條邊就分別對應相等,這兩個三角形不但形狀相同,而且大小都一樣,即為全等三角形。)

      3、問題3、你用這個“SSS”三角形全等的判定法解釋三角形具有穩(wěn)定性嗎?

     。ㄖ灰切稳叺拈L度確定,這個三角形的形狀和大小就完全確定)

      4、范例:

      例1四邊形ABCD中,AD=BC,AB=DC,試說明△ABC≌△CDA。解:已知AD=BC,AB=DC,又因為AC是公共邊,由(SSS)全等判定法,可知△ABC≌△CDA

    《全等三角形》教案18

      【教學目標】

      1、使學生理 解邊邊邊公理的 內(nèi)容,能運用邊邊邊公理證明三角形全等,為證明線段相等或角相等創(chuàng)造條件;

      2、繼續(xù)培養(yǎng)學生畫圖、實 驗,發(fā)現(xiàn)新知識的能力。

      【重點難點】

      1、難點:讓學生掌握邊邊邊 公理的內(nèi)容和運用公理 的自覺性;

      2、重點:靈活運用SSS判定兩個三角形是否全等。

      【教學過程 】

      一、創(chuàng)設問題情境,引入新課

      請問同學,老師在黑板上畫得兩個三角形,△ ABC與△ 全等嗎? 你是如何判定的。

     。ㄍ瑢W們各抒己見,如:動手用紙剪下一個三角形,剪下疊到另一個三角形上,是否完全重合;測量兩個三角形的所有邊與角,觀 察是否有三條邊對應相等,三個角對應相等。)

      上一節(jié)課我們已經(jīng)探討了兩個三角形只滿足一個或兩個邊、角對應相等條件時,兩個三角形不一定全

      等。滿足三個條件時,兩個三 角形是否全等呢?現(xiàn)在,我們就一起來探討研究。

      二、實踐探索,總結(jié)規(guī)律

      1、問題1:如果兩個三角形的三條邊分別相等,那么這兩個三角形會全等嗎?做一做:給你三條線段 ,分別為 ,你能畫出這個三角形嗎?

      先請幾位同學說說畫圖思路后,教師指導,同學們動手畫,教師演示并敘述書寫出步驟。

      步驟:

     。1)畫一線段AB使 它的長度等于c(4.8cm)。

      (2)以點A為圓心,以線段b(3cm)的長為半徑畫圓。灰渣cB為圓心,以線段a(4cm)的長為半徑畫圓弧;兩弧交于點C.

     。3)連結(jié)AC、BC.

      △ABC即為所求

      把你畫的三角形與其他同學的圖形疊合在一起,你們會發(fā)現(xiàn)什么?

      換三條線段,再試試看,是否有同樣的 結(jié)論

      請你結(jié)合畫圖、對比,說說你發(fā)現(xiàn)了什么?

      同學們各抒己見,教師總結(jié):給定三條線段,如果它們能組 成三角形,那么所畫的三角形都是全等的。 這樣我們就得到判定三角形全等的一種簡便 的方法: 如果兩個三角形的 三 條邊分別對應相等,那么這兩個三角形全等。簡寫為邊邊邊,或簡記為(S.S.S.)。

      2、問題2:你能用 相似三角形的判定法解釋這個(SSS)三角形全等的判定法嗎?

     。ㄎ覀円呀(jīng)知道,三條邊對應成比例的兩個三角形相似,而相似比為1時,三條邊就分別對應相等了,這兩個三角形不但形狀相同,而且大小都一樣,即為全等三角形。)

      3、問題3、你用這個SSS三角形全等的判定法解釋三角形具有穩(wěn)定性嗎?

     。ㄖ灰切稳叺拈L度確定了,這個三角形的形狀和大小就完全確定了)

      4、范例:

      例1 如圖19.2.2,四邊形ABCD中,AD=BC,AB=DC,試說明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因為AC是公共邊,由(S.S.S.)全等判定法,可知 △ABC≌△CDA

      5、練習:

      6、試一試:已知一個三角形的三個內(nèi) 角分別為 、 、 ,你能畫出這個三角形嗎?把你畫的.三角形與同伴畫的進行比較,你發(fā)現(xiàn)了什么?

     。ㄋ嫵龅娜切味际窍嗨频 ,但大小不一定相 同)。

      三個對應角相等的兩個三角形不一定全等。

      三、加強練習,鞏固知識

      1、如圖, , ,△ABC≌△DCB全等嗎?為什么?

      2、如圖,AD是△ABC的中線, 。 與 相等嗎?請說明理由。

      四、小結(jié)

      本節(jié)課探討出可用(SSS)來判定兩個三角形全等,并能靈活運用( SSS )來判定三角形全等。三個角對應相等的兩個三角不一定會全等。

      五、作業(yè)

    《全等三角形》教案19

      教材分析

      利用教科書提供的素材和活動,鼓勵學生經(jīng)歷觀察、操作、推理、想象等活動,發(fā)展學生的空間觀念,體會分析問題、解決問題的方法,積累數(shù)學活動經(jīng)驗。培養(yǎng)學生有條理的思考,表達和交流的能力,并且在以直觀操作的基礎上,將直觀與簡單推理相結(jié)合,注意學生推理意識的建立和對推理過程的理解,能運用自己的方式有條理的表達推理過程,為以后的證明打下基礎。

      學情分析

      學生通過前面的學習已了解了圖形的全等的概念及特征,掌握了全等圖形的對應邊、對應角的關系,這為探究三角形全等的條件做好了知識上的準備。另外,學生也具備了利用已知條件作三角形的基本作圖能力,這使學生能主動參與本節(jié)課的操作、探究成為可能。

      教學目標

     。1)學生在教師引導下,積極主動地經(jīng)歷探索三角形全等的條件的過程,體會利用操作、歸納獲得數(shù)學結(jié)論的過程。

     。2)掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩(wěn)定性,能用三角形的全等解決一些實際問題。

     。3)培養(yǎng)學生的空間觀念,推理能力,發(fā)展有條理地表達能力,積累數(shù)學活動經(jīng)驗。

      教學重點和難點

      重點:三角形全等條件的探索過程是本節(jié)課的重點。

      從設置情景提出問題,到動手操作,交流,直至歸納得出結(jié)論,整個過程學生不僅得到了兩個三角形全等的條件,更重要得是經(jīng)歷了知識的形成過程,體會了一種分析問題的方法,積累了數(shù)學活動經(jīng)驗,這將有利于學生更好的理解數(shù)學,應用數(shù)學。

      難點:三角形全等條件的探索過程,特別是創(chuàng)設出問題后,學生面對開放性問題,要做出全面、正確得分析,并對各種情況進行討論,對初一學生有一定的難度。

      根據(jù)初一學生年齡、生理及心理特征,還不具備獨立系統(tǒng)地推理論證幾何問題的能力,思維受到一定的局限,考慮問題不夠全面,因此要充分發(fā)揮教師的主導作用,適時 點撥、引導,盡可能調(diào)動所有學生的積極性、主動性參與到合作探討中來,使學生在與他人的合作交流中獲取新知,并使個性思維得以發(fā)展。

      教學過程

      一、回顧概念整合知識以提問的方式引出本節(jié)課的教學內(nèi)容:

      問題1通過調(diào)查你對商品的標價、售價、進價和利潤、利潤率這些概念清楚了嗎?你能列出它們之間的關系式嗎?

     。▽W生板書寫出三個基本關系式)

      教師引導得出變形關系式:利潤=進價 × 利潤率.

      設計意圖通過調(diào)查使學生對商品銷售過程所涉及的基本量、基本關系式有初步的了解,為后續(xù)的學習作好鋪墊.

      二、強化練習鞏固概念

      問題2運用基本關系式來做一組練習.

      1.如果足球的進價是每個a元,超市按進價提高30%后標價,則標價是多少元?

      2.如果足球的.進價是每個a元,標價是每個150元,現(xiàn)7折優(yōu)惠,則每個足球的利潤是多少元?

      3.如果足球的進價是每個a元,賣出后盈利25%,則每個足球的利潤是多少?

      4.如果足球的進價是每個a元,賣出后虧損25%,則每個足球的利潤是多少?

      設計意圖通過題組練習使學生熟練掌握進價、標價、利潤、利潤率之間的關系,進而促使學生理解概念.

      三、實踐應用合作交流

      問題3解決調(diào)查編寫的商品銷售方面的有關問題.

      設計意圖通過讓學生編題互問互檢,學生間的相互評價,拓展學生思維,給學生創(chuàng)造一個合作交流和表現(xiàn)發(fā)揮的舞臺,讓學生充分體驗成功后的喜悅.

      四、聯(lián)系實際探究新知

      問題4某商店在某一時間以每件60元的價格賣出兩件衣服,其中一件盈利25%,另一件虧損25%,賣這兩件衣服總的是盈利還是虧損,或是不盈不虧?

      教師在學生獨立思考幾分鐘后讓學生估算并簡單說出估算的理由,估算對否不給予評判,告訴學生估算對不對還要進行計算. 如何計算學生先獨立思考,然后同桌交流,最后請一名同學到黑板板演利用一元一次方程解決此實際問題全部過程,其他同學在底下完成. 完成后同學間相互評價. 最后教師指出解決問題的關鍵——尋找等量關系,教師再進一步用估算方法分析虧損的原因.

      設計意圖在學生基本掌握解決有關商品銷售問題的基礎上對所學內(nèi)容進行拓展,延伸. 設計開放性問題的目的是通過本題的講解使學生靈活運用本節(jié)的知識解決生活中的實際問題,也使全體學生在獲得必要發(fā)展的前題下,不同的學生獲得不同的體驗.

      五、鞏固練習當堂反饋

      問題5若某商品因庫存積壓,準備打折出售,如果按定價的7.5折出售將賠25元,而按定價的9折出售將賺20元. 該商品定價是多少元?

      (同學們思考后各自獨立完成,然后同學互判)設計意圖本節(jié)課對學生來說是一個難點,因此設計反饋這一環(huán)節(jié)很有必要,便于教師掌握學生學習的情況.

      六、布置作業(yè)課后延伸

      設計意圖加深學生對知識的鞏固;是課堂教學內(nèi)容的延

    【《全等三角形》教案】相關文章:

    全等三角形教案05-25

    全等三角形的教案02-24

    全等三角形判定教案02-02

    《全等三角形的判定》教案07-08

    數(shù)學《全等三角形》教案10-12

    三角形全等的判定教學反思04-07

    解三角形教案02-04

    《三角形的面積》教案02-02

    三角形的認識教案04-01