日本日本免费一区视频大片,鲁一鲁亚洲无线码影片,欧美日韩蜜桃在线播放,久久亚洲精品视频免

<sub id="hdorw"></sub>

  • <legend id="hdorw"></legend>

    八年級數(shù)學教案

    時間:2024-03-29 07:06:49 教案 我要投稿

    八年級數(shù)學教案

      作為一名教師,就有可能用到教案,教案是備課向課堂教學轉(zhuǎn)化的關(guān)節(jié)點。我們應(yīng)該怎么寫教案呢?下面是小編幫大家整理的八年級數(shù)學教案,希望對大家有所幫助。

    八年級數(shù)學教案

    八年級數(shù)學教案1

      教學目標:

      1、知識目標:

      (1)掌握已知三邊畫三角形的方法;

      (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

      (3)會添加較明顯的輔助線.

      2、能力目標:

      (1)通過尺規(guī)作圖使學生得到技能的訓(xùn)練;

      (2)通過公理的初步應(yīng)用,初步培養(yǎng)學生的邏輯推理能力.

      3、情感目標:

      (1)在公理的形成過程中滲透:實驗、觀察、歸納;

      (2)通過變式訓(xùn)練,培養(yǎng)學生“舉一反三”的學習習慣.

      教學重點:SSS公理、靈活地應(yīng)用學過的各種判定方法判定三角形全等。

      教學難點:如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當?shù)姆椒ㄅ卸▋蓚三角形全等。

      教學用具:直尺,微機

      教學方法:自學輔導(dǎo)

      教學過程:

      1、新課引入

      投影顯示

      問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

      這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學生,抓住問題的本質(zhì):三角形的三個元素――三條邊。

      2、公理的獲得

      問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

      讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)

      公理:有三邊對應(yīng)相等的兩個三角形全等。

      應(yīng)用格式: (略)

      強調(diào)說明:

      (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。

      (2)、在應(yīng)用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

      (3)、此公理與前面學過的公理區(qū)別與聯(lián)系

      (4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨立的`條件”做好了準備,進行了溝通。

      (5)說明AAA與SSA不能判定三角形全等。

      3、公理的應(yīng)用

      (1) 講解例1。學生分析完成,教師注重完成后的點評。

      例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

      求證:AD⊥BC

      分析:(設(shè)問程序)

      (1)要證AD⊥BC只要證什么?

      (2)要證∠1= 只要證什么?

      (3)要證∠1=∠2只要證什么?

      (4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?

      證明:(略)

      (2)講解例2(投影例2 )

      例2已知:如圖AB=DC,AD=BC

      求證:∠A=∠C

      (1)學生思考、分析、討論,教師巡視,適當參與討論。

      (2)找學生代表口述證明思路。

      思路1:連接BD(如圖)

      證△ABD≌△CDB(SSS)先得∠A=∠C

      思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

      (3)教師共同討論后,說明思路1較優(yōu),讓學生用思路1在練習本上寫出證明,一名學生板書,教師強調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

      例3如圖,已知AB=AC,DB=DC

      (1)若E、F、G、H分別是各邊的中點,求證:EH=FG

      (2)若AD、BC連接交于點P,問AD、BC有何關(guān)系?證明你的結(jié)論。

      學生思考、分析,適當點撥,找學生代表口述證明思路

      讓學生在練習本上寫出證明,然后選擇投影顯示。

      證明:(略)

      說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補角相等證兩直線的夾角等于 ,又是很重要的一種方法。

      例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

      求證:AC=2AE.

      證明:(略)

      學生口述證明思路,教師強調(diào)說明:“中線”條件下的常規(guī)作輔助線法。

      5、課堂小結(jié):

      (1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)

      在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。

      (2)三種方法的綜合運用

      讓學生自由表述,其它學生補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu)。

      6、布置作業(yè):

      a、書面作業(yè)P70#11、12

      b、上交作業(yè)P70#14 P71B組3

    八年級數(shù)學教案2

      一、教學目標

      1.了解分式、有理式的概念。

      2.理解分式有意義的條件,能熟練地求出分式有意義的條件。

      二、重點、難點

      1.重點:理解分式有意義的條件。

      2.難點:能熟練地求出分式有意義的條件。

      三、課堂引入

      1.讓學生填寫P127[思考],學生自己依次填出:。

      2.學生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90所用時間,與以最大航速逆流航行60所用時間相等,江水的流速為多少?

      請同學們跟著教師一起設(shè)未知數(shù),列方程。

      設(shè)江水的流速為v /h.

      輪船順流航行90所用的時間為小時,逆流航行60所用時間小時,所以=。

      3、以上的式子,有什么共同點?它們與分數(shù)有什么相同點和不同點?

      四、例題講解

      P128例1.當下列分式中的字母為何值時,分式有意義。

      [分析]已知分式有意義,就可以知道分式的.分母不為零,進一步解

      出字母的取值范圍。

      [補充提問]如果題目為:當字母為何值時,分式無意義。你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關(guān)概念。

     。ㄑa充)例2.當為何值時,分式的值為0?

    八年級數(shù)學教案3

      教學目標:

      1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。

      2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。

      重點難點:

      重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

      難點:勾股定理的發(fā)現(xiàn)

      教學過程

      一、創(chuàng)設(shè)問題的情境,激發(fā)學生的學習熱情,導(dǎo)入課題

      出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。

      出示投影2(書中的P2圖1—2)并回答:

      1、觀察圖

      1—2,正方形A中有_______個小方格,即A的面積為______個單位。

      正方形B中有_______個小方格,即A的面積為______個單位。

      正方形C中有_______個小方格,即A的面積為______個單位。

      2、你是怎樣得出上面的結(jié)果的?在學生交流回答的基礎(chǔ)上教師直接發(fā)問:

      3、圖

      1—2中,A,B,C之間的面積之間有什么關(guān)系?

      學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?

      二、做一做

      出示投影3(書中P3圖1—4)提問:

      1、圖

      1—3中,A,B,C之間有什么關(guān)系?

      2、圖

      1—4中,A,B,C之間有什么關(guān)系?

      3、從圖

      1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

      學生討論、交流形成共識后,教師總結(jié):

      以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

      三、議一議

      1、圖

      1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

      2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?

      在同學的交流基礎(chǔ)上,老師板書:

      直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

      也就是說:如果直角三角形的'兩直角邊為a,b,斜邊為c

      那么

      我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

      3、分別以

      5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

      四、想一想

      這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

      五、鞏固練習

      1、錯例辨析:

      △ABC的兩邊為3和4,求第三邊

      解:由于三角形的兩邊為3、4

      所以它的第三邊的c應(yīng)滿足=25

      即:c=5

      辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題

      △ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

      (2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

      綜上所述這個題目條件不足,第三邊無法求得。

      2、練習P

      7 §1.1 1

      六、作業(yè)

      課本P7 §1.1 2、3、4

    八年級數(shù)學教案4

      【教學目標】

      1、了解分式概念。

      2、理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。

      【教學重難點】

      重點:理解分式有意義的條件,分式的值為零的.條件。

      難點:能熟練地求出分式有意義的條件,分式的值為零的條件。

      【教學過程】

      一、課堂導(dǎo)入

      1、讓學生填寫[思考],學生自己依次填出:,,。

      2、問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

      設(shè)江水的流速為x千米/時。

      輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=。

      3、以上的式子,,,,有什么共同點?它們與分數(shù)有什么相同點和不同點?可以發(fā)現(xiàn),這些式子都像分數(shù)一樣都是A÷B的形式。分數(shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。

      [思考]引發(fā)學生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分數(shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當B≠0時,分式才有意義。

      二、例題講解

      例1:當x為何值時,分式有意義。

      【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍。

      (補充)例2:當m為何值時,分式的值為0?

     。1);(2);(3)。

      【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解。

      三、隨堂練習

      1、判斷下列各式哪些是整式,哪些是分式?9x+4,,,,,2、當x取何值時,下列分式有意義?

      3、當x為何值時,分式的值為0?

      四、小結(jié)

      談?wù)勀愕氖斋@。

      五、布置作業(yè)

      課本128~129頁練習。

    八年級數(shù)學教案5

      教學目標:

      1、了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。

      2、了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。

      教學重點:

      算術(shù)平方根的概念。

      教學難點:

      根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。

      教學過程

      一、情境導(dǎo)入

      請同學們欣賞本節(jié)導(dǎo)圖,并回答問題,學校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少?如果這塊畫布的面積是?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?

      這就要用到平方根的概念,也就是本章的主要學習內(nèi)容。這節(jié)課我們先學習有關(guān)算術(shù)平方根的概念。

      二、導(dǎo)入新課:

      1、提出問題:(書P68頁的問題)

      你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

      這個問題相當于在等式擴=25中求出正數(shù)x的值。

      一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根。a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù)。規(guī)定:0的算術(shù)平方根是0。

      也就是,在等式=a(x0)中,規(guī)定x = 。

      2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來。

      3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

      建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值。例如表示25的算術(shù)平方根。

      4、例1求下列各數(shù)的算術(shù)平方根:

      (1)100;(2)1;(3);(4)0。0001

      三、練習

      P69練習1、2

      四、探究:(課本第69頁)

      怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

      方法1:課本中的.方法,略;

      方法2:

      可還有其他方法,鼓勵學生探究。

      問題:這個大正方形的邊長應(yīng)該是多少呢?

      大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

      建議學生觀察圖形感受的大小。小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大。┧慕浦滴覀儗⒃谙鹿(jié)課探究。

      五、小結(jié):

      1、這節(jié)課學習了什么呢?

      2、算術(shù)平方根的具體意義是怎么樣的?

      3、怎樣求一個正數(shù)的算術(shù)平方根

      六、課外作業(yè):

      P75習題13.1活動第1、2、3題

    八年級數(shù)學教案6

      一、教學目標

      1、理解分式的基本性質(zhì)。

      2、會用分式的基本性質(zhì)將分式變形。

      二、重點、難點

      1、重點:理解分式的基本性質(zhì)。

      2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。

      3、認知難點與突破方法

      教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。

      三、練習題的意圖分析

      1、P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

      2、P9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

      教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。

      3。P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

      “不改變分式的值,使分式的分子和分母都不含‘—’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。

      四、課堂引入

      1、請同學們考慮:與相等嗎?與相等嗎?為什么?

      2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

      3、提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì)。

      五、例題講解

      P7例2。填空:

      [分析]應(yīng)用分式的'基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。

      P11例3。約分:

      [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。

      P11例4。通分:

      [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

    八年級數(shù)學教案7

      一、教學目標:

      1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.

      2、會求一組數(shù)據(jù)的極差.

      二、重點、難點和難點的突破方法

      1、重點:會求一組數(shù)據(jù)的極差.

      2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.

      三、課堂引入:

      下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的'氣溫進行比較呢?

      從表中你能得到哪些信息?

      比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

      經(jīng)計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.

      這是不是說,兩個時段的氣溫情況沒有什么差異呢?

      根據(jù)兩段時間的氣溫情況可繪成的折線圖.

      觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.

      用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).

      四、例習題分析

      本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習題分析

      問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統(tǒng)計知識首先應(yīng)回憶復(fù)習已學知識.問題3答案并不唯一,合理即可。

    八年級數(shù)學教案8

      [分析]分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的'解集中的公共部分,就是這類題目的解。

      [答案](1)=0(2)=2(3)=1

      五、隨堂練習

      1.判斷下列各式哪些是整式,哪些是分式?9x+4,,2、當x取何值時,下列分式有意義?

      3、當x為何值時,分式的值為0?

      六、課后練習

      1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?

     。1)甲每小時做x個零件,則他8小時做零件個,做80個零件需小時。

     。2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是千米/時,輪船的逆流速度是千米/時。

     。3)x與的差于4的商是。

      2.當x取何值時,分式無意義?

      3、當x為何值時,分式的值為0?

    八年級數(shù)學教案9

      一、教材分析:

      《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學教材八年級下冊第十九章第二節(jié)的內(nèi)容。縱觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。

      本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。

      (一)知識目標:

      1、要求學生掌握正方形的概念及性質(zhì);

      2、能正確運用正方形的性質(zhì)進行簡單的計算、推理、論證;

      (二)能力目標:

      1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、總結(jié)等能力;

      2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;

     。ㄈ┣楦心繕耍

      1、讓學生樹立科學、嚴謹、理論聯(lián)系實際的良好學風;

      2、培養(yǎng)學生互相幫助、團結(jié)協(xié)作、相互討論的團隊精神;

      3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。

      二、學生分析:

      該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設(shè)計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。

      三、教法分析:

      針對本節(jié)課的特點,采用"實踐--觀察--總結(jié)歸納--運用"為主線的教學方法。

      通過學生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。

      四、學法分析:

      本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導(dǎo)學生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。

      五、教學程序:

      第一環(huán)節(jié):相關(guān)知識回顧

      第二環(huán)節(jié):新課講解通過學生們的'發(fā)現(xiàn)引出課題“正方形”

      1、正方形的定義:引導(dǎo)學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。

      2、正方形的性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等;

      定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

      以上是對正方形定義和性質(zhì)的學習,之后是進行例題講解。

      3、例題講解:求證:正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。此題是文字證明題,由學生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請其它小組的同學提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時強調(diào)證明格式的書寫。從而培養(yǎng)他們語言表達能力,讓學生的個性得到充分的展示

      4、課堂練習:第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進一步理解,并考察學生掌握的情況。

      第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質(zhì),使他們充分認識到數(shù)學實質(zhì)是來源于生活并要服務(wù)于生活。

      5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學習以豐富的知識充實自己,達到理想中的完美。

      6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關(guān)正方形的知識。

    八年級數(shù)學教案10

      一、素質(zhì)教育目標

      (一)知識教學點

      1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.

      2.使學生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.

      3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.

      (二)能力訓(xùn)練點

      1.通過“探索式試明法”開拓學生思路,發(fā)展學生思維能力.

      2.通過教學,使學生逐步學會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的能力.

      (三)德育滲透點

      通過一題多解激發(fā)學生的學習興趣.

      (四)美育滲透點

      通過學習,體會幾何證明的.方法美.

      二、學法引導(dǎo)

      構(gòu)造逆命題,分析探索證明,啟發(fā)講解.

      三、重點·難點·疑點及解決辦法

      1.教學重點:平行四邊形的判定定理1、2、3的應(yīng)用.

      2.教學難點:綜合應(yīng)用判定定理和性質(zhì)定理.

      3.疑點及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理

      (強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).

    八年級數(shù)學教案11

      一、教材分析教材的地位和作用:

      本節(jié)內(nèi)容是第一課時《軸對稱》,本節(jié)立足于學生已有的生活經(jīng)驗和數(shù)學活動經(jīng)歷,從觀察生活中的軸對稱現(xiàn)象開始,從整體的角度認識軸對稱的特征;同時本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對這一節(jié)課的學習,使學生從對圖形的感性認識上升到對軸對稱的理性認識,為進一步學習軸對稱性質(zhì)及后面學習等腰三角形和圓等有關(guān)知識奠定基礎(chǔ)。同時這一節(jié)也是聯(lián)系數(shù)學與生活的橋梁。

      二、學情分析

      八年級學生有一定的知識水平,已經(jīng)初步形成了一定觀察能力、語言表達能力,這節(jié)課是在學生學習了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實例和動手實踐,讓學生自己去發(fā)現(xiàn)和總結(jié)軸對稱圖形和軸對稱的概念及它們之間的區(qū)別與聯(lián)系是切實可行的。

      三、教學目標及重點、難點的確定

      根據(jù)新課程標準、教材內(nèi)容特點、和學生已有的認知結(jié)構(gòu)、心理特征,我確定本節(jié)教學目標、重點、難點如下:

      (一)教學目標:

      1、知識技能

      (1)理解并掌握軸對稱圖形的概念,對稱軸;能準確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.

      (2)理解并掌握軸對稱的概念,對稱軸;了解對稱點.

      (3)了解軸對稱圖形和軸對稱的聯(lián)系與區(qū)別.

      2、過程與方法目標

      經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學習過程,培養(yǎng)學生的動手實踐能力、抽象思維和語言表達能力.

      3、情感、態(tài)度與價值觀

      通過對生活中數(shù)學問題的探究,進一步提高學生學數(shù)學、用數(shù)學的意識,在自主探究、合作交流的過程中,體會數(shù)學的重要作用,培養(yǎng)學生的學習興趣,熱愛生活的情感和欣賞圖形的對稱美。

      (二)教學重點:軸對稱圖形和軸對稱的有關(guān)概念.

      (三)教學難點:軸對稱圖形與軸對稱的聯(lián)系、區(qū)別

      .四、教法和學法設(shè)計

      本節(jié)課根據(jù)教材內(nèi)容的特點和八年級學生的知識結(jié)構(gòu)和心理特征。我選擇的:

      【教法策略】采用以直觀演示法和實驗發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學中教學中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發(fā)學生探求知識的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學生始終處于主動探索問題的積極狀態(tài),使不同層次學生的知識水平得到恰當?shù)陌l(fā)展和提高。

      【學法策略】:讓學生在“觀察----比較——操作——概括——檢驗——應(yīng)用”的學習過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

      【輔助策略】我利用多媒體課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率

      五、說程序設(shè)計:

      新的課程標準指出學生的學習內(nèi)容應(yīng)該是現(xiàn)實的有意義的,有利于學生進行觀察、試驗、猜測、驗證、推理與交流等數(shù)學活動。為了達到預(yù)期的教學目標,我對整個教學過程進行了設(shè)計。

      (一)、觀圖激趣、設(shè)疑導(dǎo)入。

      出示圖片,設(shè)計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。

      [設(shè)計意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學生喜聞樂見的故事情景,激發(fā)了學生濃厚的學習興趣,

      (二)、實踐探索、感悟特征.

      《活動一(課件演示)觀察這些圖形有什么特點?》在這個環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學生自己觀察,并引導(dǎo)學生感知,無論是隨風起舞的風箏,凌空翱翔的飛機,還是古今中外各式風格的`典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學生觀察、猜想、探究、討論,教師可以適當?shù)匾龑?dǎo),讓學生發(fā)現(xiàn):把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導(dǎo)學生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。

      為了進一步認識軸對稱圖形的特點又出示了一組練習

      (練習1)這是一組常見幾何圖形,要求學生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸

      [設(shè)計意圖]通過這個練習題不僅讓學生鞏固了軸對稱圖形的概念,而且讓學生認識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學生認識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

      (練習2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養(yǎng)了學生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發(fā)了學生的學習興趣,而且也拓展了學生的知識面。

      (三)、動手操作、再度探索新知。

      將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學中注重學生活動,鼓勵學生親自實踐,積極思考,在樂學的氛圍中,培養(yǎng)學生的動手能力,從而引出軸對稱概念。

      再次引導(dǎo)學生討論、歸納得出軸對稱的概念……。之后再結(jié)合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念.并結(jié)合圖形加以認識。

      (四)、鞏固練習、升華新知。

      出示幾幅圖形,請同學們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,

      在這組練習中讓學生動手、動口、動眼、動腦,充分調(diào)動了學生的各種感官參與學習,既加深了對兩個概念的理解,又鍛煉了同學的各方面能力。完成這組練習題后讓學生,歸納軸對稱圖形及軸對稱區(qū)別與聯(lián)系,先讓學生自己歸納,然后用多媒體展示。

      (課件演示)軸對稱圖形及兩個圖形成軸對稱區(qū)別與聯(lián)系

      (五)、綜合練習、發(fā)展思維。

      1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。

      2、判斷:

      生活中不僅有些物體的形狀是軸對稱圖形,我們所學的數(shù)字、字母和漢字中也有一些可以看成軸對稱圖形。

      (1)下面的數(shù)字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?

      0123456789ABCDEFGH

      3、像這樣寫法的漢字哪些是軸對稱圖形?

      口工用中由日直水清甲

      (這幾道題的練習做到了知識性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計,不但活躍了課堂氣氛,又檢查了學生掌握新知的情況,而且激發(fā)了學生的學習興趣,又讓學生感到數(shù)學就在自己的身邊)

      (六)歸納小結(jié)、布置作業(yè)

      [設(shè)計意圖]培養(yǎng)學生歸納和語言表達能力,鼓勵學生從數(shù)學知識、數(shù)學方法和數(shù)學情感等方面進行自我評價。作業(yè)布置要有層次,照顧學生個體差異使不同的人在數(shù)學上獲得不同的發(fā)展!

      六、設(shè)計說明

      這節(jié)課,我依據(jù)課程標準、教材特點、遵循學生的認知規(guī)律。通過六個環(huán)節(jié)的教學設(shè)計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學生輕松掌握了軸對稱圖形與關(guān)于直線成軸對稱兩個概念,指導(dǎo)學生操作、觀察、引導(dǎo)概括,獲取新知;同時注重培養(yǎng)學生的形象思維和抽象思維。在教學過程中讓學生動口、動手、動眼、動腦,使學生學有興趣、學有所獲。這就是我對本節(jié)課的理解和說明。

    八年級數(shù)學教案12

      教學目標:

      知識目標:

      1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

      2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。

      3、會對一個具體實例進行概括抽象成為數(shù)學問題。

      能力目標:

      1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

      2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

      情感目標:

      1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

      2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

      教學重點:

      掌握函數(shù)概念。

      判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

      能把實際問題抽象概括為函數(shù)問題。

      教學難點:

      理解函數(shù)的概念。

      能把實際問題抽象概括為函數(shù)問題。

      教學過程設(shè)計:

      一、創(chuàng)設(shè)問題情境,導(dǎo)入新課

      『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

      『生』:摩天輪。

      『師』:你們坐過嗎?

      ……

      『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?

      『生』:應(yīng)該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復(fù)依次,即轉(zhuǎn)動一圈高度就重復(fù)一次。

      『師』:分析有道理。摩天輪上一點的高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點的高度h(米)之間的關(guān)系。

      大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應(yīng)的高度h。下面根據(jù)圖5-1進行填表:

      t/分0 1 2 3 4 5 …… h/米

      t/分0 1 2 3 4 5 …… h/米3 11 37 45 37 11 ……

      『師』:對于給定的時間t,相應(yīng)的高度h確定嗎?

      『生』:確定。

      『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

      『生』:研究的對象有兩個,是時間t和高度h。

      『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認識世界。下面我們就去研究一些有關(guān)變量的問題。

      二、新課學習

      做一做

     。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的`總數(shù)是如何變化的?

      填寫下表:

      層數(shù)n 1 2 3 4 5 …物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

      『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。

     。2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

      ①計算當fenbie為50,60,100時,相應(yīng)的滑行距離S是多少?

     、诮o定一個V值,你能求出相應(yīng)的S值嗎?

      解:略

      議一議

      『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

      『生』:相同點是:這三個問題中都研究了兩個變量。

      不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。

      『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應(yīng)地就確定了另一個變量的值”這一共性。

      函數(shù)的概念

      在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個變量(因變量)的值。

      一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

      三、隨堂練習

      書P152頁隨堂練習1、2、3

      四、本課小結(jié)

      初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

      在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。

      函數(shù)的三種表達式:

      圖象;(2)表格;(3)關(guān)系式。

      五、探究活動

      為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應(yīng)交水費y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?

     。ù鸢福篩=1.8x-6或)

      六、課后作業(yè)

      習題6.1

    八年級數(shù)學教案13

      一.教學目標:

      1.了解方差的定義和計算公式。

      2.理解方差概念的產(chǎn)生和形成的過程。

      3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

      二.重點、難點和難點的突破方法:

      1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

      2.難點:理解方差公式

      3.難點的突破方法:

      方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。

      (1)首先應(yīng)使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。

      (2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學生知道描述數(shù)據(jù),波動性的方法?梢援嬚劬圖方法來反映這種波動大小,可是當波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。

      (3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。

      三.例習題的'意圖分析:

      1.教材P125的討論問題的意圖:

      (1).創(chuàng)設(shè)問題情境,引起學生的學習興趣和好奇心。

      (2).為引入方差概念和方差計算公式作鋪墊。

      (3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。

      (4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學生體會到學習方差的意義和目的。

      2.教材P154例1的設(shè)計意圖:

      (1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習,鞏固對方差公式的掌握。

      (2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。

      四.課堂引入:

      除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學生也更感興趣一些。

      五.例題的分析:

      教材P154例1在分析過程中應(yīng)抓住以下幾點:

      1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。

      2.在求方差之前先要求哪個統(tǒng)計量,為什么?學生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。

      3.方差怎樣去體現(xiàn)波動大小?

      這一問題的提出主要復(fù)習鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。

      六.隨堂練習:

      1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

      甲:9、10、11、12、7、13、10、8、12、8;

      乙:8、13、12、11、10、12、7、7、9、11;

      問:(1)哪種農(nóng)作物的苗長的比較高?

      (2)哪種農(nóng)作物的苗長得比較整齊?

      2.段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭荆l的成績比較穩(wěn)定?為什么?

      測試次數(shù)1 2 3 4 5

      段巍13 14 13 12 13

      金志強10 13 16 14 12

      參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

      2.段巍的成績比金志強的成績要穩(wěn)定。

      七.課后練習:

      1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

      2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

      甲:7、8、6、8、6、5、9、10、7、4

      乙:9、5、7、8、7、6、8、6、7、7

      經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。

      3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是( )

      甲:0、1、0、2、2、0、3、1、2、4

      乙:2、3、1、2、0、2、1、1、2、1

      分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?

      4.小爽和小兵在10次百米跑步練習中成績?nèi)绫硭荆?單位:秒)

      小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

      小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

      如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

      答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好

      4. =10.9、S =0.02;

      =10.9、S =0.008

      選擇小兵參加比賽。

    八年級數(shù)學教案14

      一、教學目標

      知識與技能

      1、了解立方根的概念,初步學會用根號表示一個數(shù)的立方根。

      2、了解開立方與立方互為逆運算,會用立方運算求某些數(shù)的立方根。

      過程與方法

      1讓學生體會一個數(shù)的立方根的惟一性。

      2培養(yǎng)學生用類比的思想求立方根的能力,體會立方與開立方運算的互逆性,滲透數(shù)學的轉(zhuǎn)化思想。

      情感態(tài)度與價值觀

      通過立方根符號的引入體會數(shù)學的簡潔美。

      二、重點難點

      重點

      立方根的概念和求法。

      難點

      立方根與平方根的區(qū)別,立方根的求法

      三、學情分析

      前面已經(jīng)學過了平方根的知識,由于平方根與立方根的學習有很多相似之處,所以在教學設(shè)計上,主要還是采取類比的思想,在全面回顧平方根的`基礎(chǔ)上,再來引導(dǎo)學生進行立方根知識的學習,讓學生感覺到其實立方根知識并不難,可以與平方根知識對比著學,這樣可以克服學生學習新知識的陌生心理。在學習方法上,提倡讓學生在反思中學習,在概念的得出,歸納性質(zhì),解題之后都要進行適當?shù)姆此,在反思中看待與理解新知識和新問題,會更理性和全面,會有更大的進步。

      四、教學過程設(shè)計

      教學環(huán)節(jié)問題設(shè)計師生活動備注

      情境創(chuàng)設(shè)問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長應(yīng)該是多少?

      設(shè)這種包裝箱的邊長為xm,則=27這就是求一個數(shù),使它的立方等于27.

      因為=27,所以x=3.即這種包裝箱的邊長應(yīng)為3m

      歸納:

      立方根的概念:

      創(chuàng)設(shè)問題情境,引起學生學習的興趣,經(jīng)小組討論后引出概念。

      通過具體問題得出立方根的概念

      探究一:

      根據(jù)立方根的意義填空,看看正數(shù)、0、負數(shù)的立方根各有什么特點?

      因為(),所以0.125的立方根是()

      因為(),所以-8的立方根是()

      因為(),所以-0.125的立方根是()

      因為(),所以0的立方根是()

      一個正數(shù)有一個正的立方根

      0有一個立方根,是它本身

      一個負數(shù)有一個負的立方根

      任何數(shù)都有唯一的立方根

      【總結(jié)歸納】

      一個數(shù)的立方根,記作,讀作:“三次根號”,其中叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。

      探究二:

      因為所以=

      因為,所以=總結(jié):

      利用開立方和立方互為逆運算關(guān)系,求一個數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗其正確性,求負數(shù)的立方根,可以先求出這個負數(shù)的絕對值的立方根,再取其相反數(shù),即。

    八年級數(shù)學教案15

      學習重點:函數(shù)的概念 及確定自變量的取值范圍。

      學習難點:認識函數(shù),領(lǐng)會函數(shù)的意義。

      【自主復(fù)習知識準備】

      請你舉出生活中含有兩個變量的變化過程,說明其中的常量和變量。

      【自主探究知識應(yīng)用】

      請看書72——74頁內(nèi)容,完成下列問題:

      1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。

      2、 完成書上第73頁的思考,體會圖形中體現(xiàn)的變量和變量之間的關(guān)系。

      3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。

      歸納:一般的,在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應(yīng),那么我們就說x是__________,y是x的________。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數(shù)值。

      補充小結(jié):

      (1)函數(shù)的定義:

      (2)必須是一個變化過程;

      (3)兩個變量;其中一個變量每取一個值 ,另一個變量有且有唯一值對它對應(yīng)。

      三、鞏固與拓展:

      例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

      (1)寫出表示y與x的函數(shù)關(guān)系式.

      (2)指出自變量x的取值范圍.

      (3) 汽車行駛200千米時,油箱中還有多少汽油?

      【當堂檢測知識升華】

      1、判斷下列變量之間是不是函數(shù)關(guān)系:

      (1)長方形的寬一定時,其長與面積;

      (2)等腰三角形的底邊長與面積;

      (3)某人的年齡與身高;

      2、寫出下列函數(shù)的解析式.

      (1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子.

      (2)汽車加油時,加油槍的流量為10L/min.

     、偃绻佑颓,油箱里還有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min)之間的函數(shù)關(guān)系;

     、谌绻佑蜁r,油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min) 之間的函數(shù)關(guān)系.

      (3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時,應(yīng)繳納利息部分的20%的'利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

      (4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.

      八年級變量與函數(shù)(2)數(shù)學教案的全部內(nèi)容由數(shù)學網(wǎng)提供,教材中的每一個問題,每一個環(huán)節(jié),都有教師依據(jù)學生學習的實際和教材的實際進行有針對性的設(shè)置,希望大家喜歡!

    【八年級數(shù)學教案】相關(guān)文章:

    八年級數(shù)學教案01-08

    八年級數(shù)學教案全集02-24

    八年級數(shù)學教案15篇03-20

    八年級數(shù)學教案【常用15篇】12-30

    幼兒的數(shù)學教案03-01

    小學數(shù)學教案06-14

    小學數(shù)學教案[精選]08-04

    小學數(shù)學教案【經(jīng)典】08-01

    【精選】小學數(shù)學教案07-28

    小學數(shù)學教案(精選)09-02