日本日本免费一区视频大片,鲁一鲁亚洲无线码影片,欧美日韩蜜桃在线播放,久久亚洲精品视频免

<sub id="hdorw"></sub>

  • <legend id="hdorw"></legend>

    二次根式教案

    時間:2022-08-05 18:57:30 教案 我要投稿

    【精選】二次根式教案三篇

      作為一名優(yōu)秀的教育工作者,可能需要進行教案編寫工作,教案有利于教學水平的提高,有助于教研活動的開展。教案要怎么寫呢?以下是小編整理的二次根式教案3篇,僅供參考,希望能夠幫助到大家。

    【精選】二次根式教案三篇

    二次根式教案 篇1

      目 標

      1. 熟練地運用二次根式的性質(zhì)化簡二次根式;

      2. 會運用二次根式解決簡單的實際問題;

      3. 進一步體驗二次根式及其運算的實際意義和應用價值。

      教學設想

      本節(jié)課的重點是:二次根式及其運算的實際應用;難點是:例7涉及多方面的知識和綜合運用,思路比較復雜。

      教 學 程序 與 策 略

      一、預習檢測

      1.解決節(jié)前問題:

      如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

      歸納:

      在日常生活和生產(chǎn)實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。

      二、合作交流:

      1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的`坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)

      讓學生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運算?能化簡嗎?

      注意解題格式

      教 學 程 序 與 策 略

      三、鞏固練習:

      完成課本P17、1,組長檢查反饋;

      四、拓展提高:

      1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

      師生共同分析解題思路,請學生寫出解題過程。

      五、課堂小結(jié):

      1.談一談:本節(jié)課你有什么收獲?

      2.運用二次根式解決簡單的實際問題時應注意的的問題

      六、堂堂清

      1: 作業(yè)本(2)

      2:課本P17頁:第4、5題選做。

    二次根式教案 篇2

      一、教學目標

      1.了解二次根式的意義;

      2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

      3. 掌握二次根式的性質(zhì) 和 ,并能靈活應用;

      4.通過二次根式的計算培養(yǎng)學生的邏輯思維能力;

      5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學美.

      二、教學重點和難點

      重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

      難點:確定二次根式中字母的取值范圍.

      三、教學方法

      啟發(fā)式、講練結(jié)合.

      四、教學過程

      (一)復習提問

      1.什么叫平方根、算術(shù)平方根?

      2.說出下列各式的意義,并計算:

      通過練習使學生進一步理解平方根、算術(shù)平方根的概念.

      觀察上面幾個式子的特點,引導學生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

      表示的是算術(shù)平方根.

      (二)引入新課

      我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

      新課:二次根式

      定義: 式子 叫做二次根式.

      對于 請同學們討論論應注意的問題,引導學生總結(jié):

      (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

      若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

      (2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次

      根式指的是某種式子的外在形態(tài).請學生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學生分析、回答.

      例1 當a為實數(shù)時,下列各式中哪些是二次根式?

      分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當a-10時,a+10又如當0

      例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

      解:略.

      說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.

      例3 當字母取何值時,下列各式為二次根式:

      (1) (2) (3) (4)

      分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式.

      解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當a、b為任意實數(shù)時, 是二次根式.

      (2)-3x0,x0,即x0時, 是二次根式.

      (3) ,且x0,x0,當x0時, 是二次根式.

      (4) ,即 ,故x-20且x-20, x2.當x2時, 是二次根式.

      例4 下列各式是二次根式,求式子中的字母所滿足的.條件:

      (1) ; (2) ; (3) ; (4)

      分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

      解:(1)由2a+30,得 .

      (2)由 ,得3a-10,解得 .

      (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

      (4)由-b20得b20,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

      (三)小結(jié)(引導學生做出本節(jié)課學習內(nèi)容小結(jié))

      1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術(shù)平方根的表達式.

      2.式子中,被開方數(shù)(式)必須大于等于零.

      (四)練習和作業(yè)

      練習:

      1.判斷下列各式是否是二次根式

      分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

      2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

      五、作業(yè)

      教材P.172習題11.1;A組1;B組1.

      六、板書設計

    二次根式教案 篇3

      1.請同學們回憶(≥0,b≥0)是如何得到的?

      2.學生觀察下面的例子,并計算:

      由學生總結(jié)上面兩個式的關(guān)系得:

      類似地,請每個同學再舉一個例子,然后由這些特殊的例子,得出:

      (≥0,b0)

      使學生回憶起二次根式乘法的運算方法的推導過程.

      類似地,請每個同學再舉一個例子,

      請學生們思考為什么b的取值范圍變小了?

      與學生一起寫清解題過程,提醒他們被開方式一定要開盡.

      對比二次根式的乘法推導出除法的'運算方法

      增強學生的自信心,并從一開始就使他們參與到推導過程中來.

      對學生進一步強化被開方數(shù)的取值范圍,以及分母不能為零.

      強化學生的解題格式一定要標準.

      教學過程設計

      問題與情境師生行為設計意圖

      活動二自我檢測

      活動三挑戰(zhàn)逆向思維

      把反過來,就得到

     。ā0,b0)

      利用它就可以進行二次根式的化簡.

      例2化簡:

      (1)

     。2)(b≥0).

      解:(1)(2)練習2化簡:

     。1)(2)活動四談談你的收獲

      1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).

      2.會利用商的算術(shù)平方根的性質(zhì)進行簡單的二次根式的化簡.

      找四名學生上黑板板演,其余學生在練習本上計算,然后再找學生指出不足.

      二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

      找學生口述解題過程,教師將過程寫在黑板上.

      請學生仿照例題自己解決這兩道小題,組長檢查本組的學習情況.

      請學生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

      為了更快地發(fā)現(xiàn)學生的錯誤之處,以便糾正.

      此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎理解并不難.

      讓學困生在自己做題時有一個參照.

      充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

    【二次根式教案】相關(guān)文章:

    二次根式教案四篇07-17

    精選二次根式教案4篇08-16

    精選二次根式教案3篇08-08

    二次根式教案合集7篇04-10

    二次根式教案匯總7篇04-04

    二次根式教案匯編六篇04-04

    有關(guān)二次根式教案三篇02-03

    二次根式教案匯總九篇04-07

    二次根式教案范文10篇04-05