因數(shù)和倍數(shù)教案[常用3篇]
作為一名為他人授業(yè)解惑的教育工作者,通常需要用到教案來輔助教學,教案是教學活動的總的組織綱領和行動方案。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編收集整理的因數(shù)和倍數(shù)教案,僅供參考,大家一起來看看吧。
因數(shù)和倍數(shù)教案1
因數(shù)和倍數(shù)
教學目標:
知識與技能、過程與方法:
1、從操作活動中理解因數(shù)和倍數(shù)的好處,會決定一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
情感態(tài)度與價值觀:
2、培養(yǎng)學生抽象、概括的潛力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。
3、培養(yǎng)學生的合作意識、探索意識,以及熱愛數(shù)學學習的情感。
教學重、難點:
1、理解因數(shù)和倍數(shù)的含義。
2、學會求一個數(shù)的因數(shù)或倍數(shù)的方法。
教學準備:課件
教學過程設計:
一、創(chuàng)設情境,引入新課
師:人與人之間存在著許多種關(guān)系,你們和爸爸(媽媽)的關(guān)系是……?
生:父子(父母、母子、母女)關(guān)系。
師:我和你們的關(guān)系是……?
生:師生關(guān)系。
師:對,我是你們的老師,你們是我的學生,我們的關(guān)系是師生關(guān)系。在數(shù)學中,數(shù)與數(shù)之間也存在著多種關(guān)系,這一節(jié)課,我們一齊探討兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。(板書課題:因數(shù)與倍數(shù))
二、探究新知
(一)學習因數(shù)和倍數(shù)的概念
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
。ㄖ该f一說)
4、師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
那你還能找出12的其他因數(shù)嗎?
。ǘ、學習求一個的因數(shù)或倍數(shù)的方法。
A、找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
從12的因數(shù)能夠看得出,一個數(shù)的因數(shù)還不止一個,那我們一齊找找看18的因數(shù)有哪些?
學生嘗試完成:匯報
。18的因數(shù)有:1,2,3,6,9,18)
師:說說看你是怎樣找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36
師:你是怎樣找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫能夠嗎?為什么?(不能夠,因為重復的因數(shù)只要寫一個就能夠了,所以不需要寫兩個6)
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的必須是,而最大的必須是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選取其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還能夠用集合表示。
小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一向找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
B、找倍數(shù):
1、我們一齊找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……
師:為什么找不完
你是怎樣找到這些倍數(shù)的(生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍數(shù)最小是幾最大的你能找到嗎
2、讓學生完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12
改寫成:3的倍數(shù)有:3,6,9,12,……
你是怎樣找的'?(用3分別乘以1,2,3,……倍)
5的倍數(shù)有:5,10,15,20,……
師:表示一個數(shù)的倍數(shù)狀況,除了用這種文字敘述的方法外,還能夠用集合來表示
2的倍數(shù)3的倍數(shù)5的倍數(shù)
師:我們明白一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎樣樣的呢?
。ㄒ粋數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))
三、課堂小結(jié)
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
板書設計:
因數(shù)與倍數(shù)
因數(shù)與倍數(shù)指的是數(shù)與數(shù)之間的關(guān)系。
一個數(shù)因數(shù)的個數(shù)是有限的,最小的因數(shù)是1最大的因數(shù)是它本身。
一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
教學反思:
教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學生的實際狀況,我進行了重組教材,先讓學生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎上再讓學生探究18的因數(shù)。透過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學生思考并發(fā)現(xiàn):按照必須的順序一對對的找因數(shù),能既找全又不遺漏。進而又借助體態(tài)語言——打手勢,讓學生說出30和36的因數(shù),到達了鞏固練習的目的。又明確了像36當兩個因數(shù)相等時,只寫其中的一個6。這樣設計由易到難,由淺入深,貼合了學生的認知規(guī)律。
因數(shù)和倍數(shù)教案2
一、談話導入,激發(fā)興趣
1、回顧學過的數(shù)
2、明確學習主題
二、自主學習,探究新知
1、自主學習
自學指導:閱讀課本P12和P13例1
(1)2x6=12,表示的意義是什么?在這個乘法算式中,誰是誰的因數(shù),誰是誰的倍數(shù)?
。2)想一想:什么情況下,兩個不是零的自然數(shù)之間是因數(shù)(倍數(shù))的關(guān)系?
。3)怎樣找出18的全部因數(shù)?你是怎樣想的?
怎樣表示出18的.因數(shù)?
要求:
1、獨立學習
2、時間6分鐘
3、全班交流
問題一:初建模型
在圖式結(jié)合中構(gòu)建因數(shù)、倍數(shù)的概念,并從中感受因數(shù)和倍數(shù)是相互依存的,有著互逆關(guān)系的一組概念。
問題二:深化模型
明確因數(shù)與倍數(shù)的外延,進一步認識、內(nèi)化因數(shù)、倍數(shù)的內(nèi)涵,從中提煉出因數(shù)、倍數(shù)模型的本質(zhì)意義。
ab=c(a、b、c為非零自然數(shù))
問題三:應用模型
、俳涣髡乙粋數(shù)的因數(shù)的方法及表示方法。
、谡30、36的因數(shù)。
3、議一議
(1)今天學習的因數(shù)與乘法算式中的因數(shù)一樣嗎?倍數(shù)與倍一樣嗎?
。2)通過找一個數(shù)的因數(shù),你有什么發(fā)現(xiàn)?
三、檢測反饋,拓展運用
四、板書設計
因數(shù)和倍數(shù)
2x6=12
2和6是12的因數(shù)。
12是2和6的倍數(shù)。
3x4=12
ab=c(a、b、c為非零自然數(shù))
a和b是c的因數(shù),c是a和b的倍數(shù)。
因數(shù)和倍數(shù)教案3
教學目標:
1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數(shù)和因數(shù)的意義;探索求個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)倍數(shù)和因數(shù)的某些特征。
2、在探索一個數(shù)的倍數(shù)和因數(shù)的過程中培養(yǎng)學生觀察、分析、概括能力,培養(yǎng)有序思考能力。
3、通過倍數(shù)和因數(shù)之間的互相依存關(guān)系使學生感受數(shù)學知識的內(nèi)在聯(lián)系,體會到數(shù)學內(nèi)容的奇妙、有趣。
教學重點:理解倍數(shù)和因數(shù)的意義。
教學難點:探索求一個數(shù)的倍數(shù)和因數(shù)的方法。
教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。
設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數(shù)學思考的方法。
教學過程:
一、智力競猜引入新課
1、讓學生進行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)
2、孫子、爸爸、爺爺?shù)拿址謩e是韓韓,韓有才、韓廣發(fā)。請學生以韓有才為中心介紹下三個人的關(guān)系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。
3、上述父子關(guān)系是一種互相依存的關(guān)系,在表述時一定要完整。并向?qū)W生說明自然數(shù)中某兩個數(shù)之間也有這種類似的依存關(guān)系倍數(shù)和因數(shù)。
設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發(fā)學生的學習興趣,二是以此引出相互依存的關(guān)系,為理解倍數(shù)和因數(shù)的相互依存關(guān)系作鋪墊。
二、操作發(fā)現(xiàn)理解概念
1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。
2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向?qū)W生說明:如果一個圖形經(jīng)過旋轉(zhuǎn)后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)
設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉(zhuǎn)后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質(zhì)。
3、讓學生一起看乘法算式43=12,向?qū)W生指出:12是4的倍數(shù),12也是3的倍數(shù),4是12的因數(shù),3也是12的因數(shù)。
4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。
5、讓學生仿照說出62=12和121=12中哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)。
6、學生相互出一道乘法算式,并說一說誰是誰的倍數(shù),誰是誰的因數(shù)。學生可能會出現(xiàn)0( )=0的情況,借此向?qū)W生說明我們研究因敷和倍數(shù)一般指不是0的自然數(shù)。
設計說明:倍數(shù)和因數(shù)是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數(shù)和因數(shù)的認識,同時使學生明確倍數(shù)和因數(shù)的研究范圍。
7、以43=12與123=4為例,向?qū)W生說明后面的除法算式是由前面的乘法算式得到的,根據(jù)這個除法算式可以說誰是誰的倍數(shù),誰是誰的因數(shù),說好后再讓學生試一試其他幾個除法算式中的關(guān)系。
8、練習:根據(jù)下面的算式,說說哪個數(shù)是哪個數(shù)的因數(shù),哪個數(shù)是哪個數(shù)的倍數(shù)
54=20 357=5 3+4=7
(1)學生回答后引發(fā)學生思考:能不能說20是倍數(shù),4是因數(shù)。使學生進一步理解倍數(shù)是兩個數(shù)之間的一種相互依存的關(guān)系,必須說哪個是哪個的倍數(shù),因數(shù)也同樣如此。
(2)通過3+4=7使學生進一步理解倍數(shù)和因數(shù)都是建立在乘法或除法的基礎之上的。
設計說明:乘法和除法是一種互逆的關(guān)系,在學習中應該溝通它們之間的聯(lián)系;通過三道練習可以鞏固剛剛獲得的對倍數(shù)和因數(shù)的認識,將融會貫通落到實處。
三、探索方法發(fā)現(xiàn)特征
1、找一個數(shù)的因數(shù)。
(1)聯(lián)系板書的乘除法算式觀察思考12的因數(shù)有哪些,井想辦法找出15的所有因數(shù)。
(2)學生獨立思考,明白根據(jù)一個乘法(除法)算式可以找出15的兩個因數(shù),在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數(shù)。
(3)用一對一對的方法找出36的所有因數(shù)?赡苡械膶W生根據(jù)乘法算式找的,也有的學生是根據(jù)除法算式找的,都應該給予肯定。
(4)引導學生觀察12、15、36的因數(shù),說一說有什么發(fā)現(xiàn)。一個數(shù)的因數(shù)個數(shù)是有限的,其中最小的因數(shù)都是1,最大的都是它本身。
設計說明:先安排學生找一個數(shù)的'因數(shù)可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數(shù)的因數(shù)指明了方向。學生交流時突出了方法的多樣性,既可以根據(jù)乘法算式想,也可以根據(jù)除法算式想,交流后引導學生一對一對的找是必要的,它可以培養(yǎng)學生的有序思考。最后引導學生觀察。使學生自主發(fā)現(xiàn)、歸納出一個數(shù)的因數(shù)的某些特征。
2、找一個數(shù)的倍數(shù)。
(1)讓學生找3的倍數(shù),比一比誰找得多。
(2)學生匯報后,引導學生有序思考,并得出3的倍數(shù)可以用3乘連續(xù)的自然數(shù)1、2、3,3的倍數(shù)的個數(shù)是無限的,所以寫3的倍數(shù)時要借助省略號表示結(jié)果。
(3)找出2的倍數(shù)和5的倍數(shù),并引導學生觀察3、2、5的倍數(shù)情況,說一說有什么發(fā)現(xiàn)。一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
設計說明:讓學生比一比誰找的倍數(shù)多,可以使學生產(chǎn)生認知沖突,認識到一個數(shù)的倍數(shù)個數(shù)是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發(fā)現(xiàn)、歸納一個數(shù)倍數(shù)的特征。
四、鞏固練習
師;剛才同學們認識了倍數(shù)和因數(shù),并且探索了求一個數(shù)因數(shù)和倍數(shù)的方法,想不想檢查一下自己掌握得如何?
1、想想做做的第l題。學生表述后強調(diào)哪個是哪個的倍數(shù)(或因數(shù))。
2、想想做做的第2題。學生填好后引導學生說一說:表中的應付元數(shù)其實都是什么?表格中為什么用省略號?
3、想想做做的第3題。學生填好后引導學生說一說:表格中所有數(shù)都是什么?這個表格中為什么沒有省略號?
4、游戲找朋友。讓學生拿出各自的學號卡片,找出自己學號數(shù)的所有因數(shù),使學生發(fā)現(xiàn)每個學號數(shù)的因數(shù)都在全班的學號數(shù)以內(nèi);再讓學生找一找自己學號數(shù)的倍數(shù),井說一說能不能在全班學號數(shù)內(nèi)部找到一個,還有其他的嗎?
設計說明:第l題是基礎練習.可以鞏固對倍數(shù)和因數(shù)的認識,2、3兩題聯(lián)系實際,使學生感悟到其中蘊藏著求一個數(shù)倍數(shù)和因數(shù)的方法,以及倍數(shù)和因數(shù)的某些特征。第4題通過游戲活動進一步激發(fā)學生持續(xù)的學習熱情,而且可以綜合應用求倍數(shù)和因數(shù)的方法,再次認識到倍數(shù)和因數(shù)的某些特征。
五、自我梳理探索延伸
1、通過這節(jié)課的學習你有什么收獲?向你的同伴介紹一下。
2、生活中許多現(xiàn)象與我們學習的倍數(shù)和因數(shù)的知識有關(guān),課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數(shù)是兩位數(shù)中最多的,可以方便計算。
設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數(shù)和因數(shù)的相關(guān)知識,溝通知識間的聯(lián)系,拓展學生的知識面,使學生認識到數(shù)學知識的應用價值。
【因數(shù)和倍數(shù)教案】相關(guān)文章:
因數(shù)和倍數(shù)教案02-21
公倍數(shù)和公因數(shù)教案07-18
《倍數(shù)與因數(shù)》教案03-14
因數(shù)和倍數(shù)教學反思02-07