日本日本免费一区视频大片,鲁一鲁亚洲无线码影片,欧美日韩蜜桃在线播放,久久亚洲精品视频免

<sub id="hdorw"></sub>

  • <legend id="hdorw"></legend>

    二次根式教案

    時間:2024-08-18 12:48:38 教案 我要投稿

    二次根式教案模板十篇

      作為一位不辭辛勞的人民教師,常常要寫一份優(yōu)秀的教案,教案是教學活動的總的組織綱領和行動方案。那要怎么寫好教案呢?下面是小編整理的二次根式教案10篇,歡迎大家分享。

    二次根式教案模板十篇

    二次根式教案 篇1

      教學目的:

      1、在二次根式的混合運算中,使學生掌握應用有理化分母的方法化簡和計算二次根式;

      2、會求二次根式的代數的值;

      3、進一步提高學生的綜合運算能力。

      教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

      教學難點:正確進行二次根式的混合運算和求含有二次根式的代數式的值

      教學過程:

      一、二次根式的混合運算

      例1 計算:

      分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

      (2)題是含乘方、加、減和除法的混合運算,應按運算的順序進行計算,先算括號內的式子,最后進行除法運算。注意的計算。

      練習1:P206 / 8--① P207 / 1①②

      例2 計算

      問:計算思路是什么?

      答:先把第一人的括號內的式子通分,把第二個括號內的式子的分母有理化,再進行計算。

      二、求代數式的值。 注意兩點:

      (1)如果已知條件為含二次根式的式子,先把它化簡;

      (2)如果代數式是含二次根式的式子,應先把代數式化簡,再求值。

      例3 已知,求的值。

      分析:多項式可轉化為用與表示的式子,因此可根據已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母?墒褂嬎愫啽。

      例4 已知,求的值。

      觀察代數式的特點,請說出求這個代數式的值的思路。

      答:所求的代數式中,相減的兩個式子的分母都含有二次根式,為化去它們的`分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數式化簡后,再求值。

      三、小結

      1、對于二次根式的混合混合運算。應根據二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內的式子的運算,運算結果要化為最簡二次根式。

      2、在代數式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡,然后再求值。

      3、在進行二次根式的混合運算時,要根據題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

      四、作業(yè)

      P206 / 7 P206 / 8---②③

    二次根式教案 篇2

      一、教學目標

      1.理解分母有理化與除法的關系.

      2.掌握二次根式的分母有理化.

      3.通過二次根式的分母有理化,培養(yǎng)學生的運算能力.

      4.通過學習分母有理化與除法的關系,向學生滲透轉化的數學思想

      二、教學設計

      小結、歸納、提高

      三、重點、難點解決辦法

      1.教學重點:分母有理化.

      2.教學難點:分母有理化的技巧.

      四、課時安排

      1課時

      五、教具學具準備

      投影儀、膠片、多媒體

      六、師生互動活動設計

      復習小結,歸納整理,應用提高,以學生活動為主

      七、教學過程

      【復習提問】

      二次根式混合運算的`步驟、運算順序、互為有理化因式.

      例1 說出下列算式的運算步驟和順序:

      (1) (先乘除,后加減).

      (2) (有括號,先去括號;不宜先進行括號內的運算).

     。3)辨別有理化因式:

      有理化因式: 與 , 與 , 與 …

      不是有理化因式: 與 , 與 …

      化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據分式的基本性質).

      例如:等式子的化簡,如果分母是兩個二次根式的和,應該怎樣化簡?

      引入新課題.

      【引入新課】

      化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

      例2 把下列各式的分母有理化:

     。1) ; (2) ; (3)

      解:略.

      注:通過例題的講解,使學生理解和掌握化簡的步驟、關鍵問題、化簡的依據.式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

    二次根式教案 篇3

      一、內容解析

      本節(jié)教材是在學生學習二次根式概念的基礎上,結合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質.

      對于二次根式的性質,教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據算術平方根的意義,就具體數字進行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質.

      二、目標和目標解析

      1.教學目標

     。1)經歷探索二次根式的性質的過程,并理解其意義;

     。2)會運用二次根式的性質進行二次根式的化簡;

     。3)了解代數式的概念.

      2.目標解析

     。1)學生能根據具體數字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質,會用符號表述這一性質;

     。2)學生能靈活運用二次根式的`性質進行二次根式的化簡;

     。3)學生能從已學過的各種式子中,體會其共同特點,得出代數式的概念.

      三、教學問題診斷分析

      二次根式的性質是二次根式化簡和運算的重要基礎.學生根據二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養(yǎng)其靈活運用的能力.

      本節(jié)課的教學難點為:二次根式性質的靈活運用.

      四、教學過程設計

      1.探究性質1

      問題1 你能解釋下列式子的含義嗎?

      師生活動:教師引導學生說出每一個式子的含義.

      【設計意圖】讓學生初步感知,這些式子都表示一個非負數的算術平方根的平方.

      問題2 根據算術平方根的意義填空,并說出得到結論的依據.

      師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

      【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質1作鋪墊.

      問題3 從以上的結論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

      師生活動:引導學生歸納得出二次根式的性質: ( ≥0).

      【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質1,培養(yǎng)學生抽象概括的能力.

      例2 計算

     。1)

      (2)

      師生活動:學生獨立完成,集體訂正.

      【設計意圖】鞏固二次根式的性質1,學會靈活運用.

      2.探究性質2

      問題4 你能解釋下列式子的含義嗎?

      師生活動:教師引導學生說出每一個式子的含義.

      【設計意圖】讓學生初步感知,這些式子都表示一個數的平方的算術平方根.

      問題5 根據算術平方根的意義填空,并說出得到結論的依據.

      師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

      【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質2作鋪墊.

      問題6 從以上的結論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

      師生活動:引導學生歸納得出二次根式的性質: ( ≥0)

      【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質2,培養(yǎng)學生抽象概括的能力.

      例3 計算

     。1)

     。2)

      師生活動:學生獨立完成,集體訂正.

      【設計意圖】鞏固二次根式的性質2,學會靈活運用.

      3.歸納代數式的概念

      問題7 回顧我們學過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?

      師生活動:學生概括式子的共同特征,得得出代數式的概念.

      【設計意圖】學生通過觀察式子的共同特征,形成代數式的概念,培養(yǎng)學生的概括能力.

      4.綜合運用

     。1)算一算:

      【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.

      (2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

      【設計意圖】通過此問題的設計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

     。3)談一談你對 與 的認識.

      【設計意圖】加深學生對二次根式性質的理解.

      5.總結反思

      (1)你知道了二次根式的哪些性質?

     。2)運用二次根式性質進行化簡需要注意什么?

      (3)請談談發(fā)現(xiàn)二次根式性質的思考過程?

     。4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數得到的式子?說說你對代數式的認識.

      6.布置作業(yè):教科書習題16.1第2,4題.

    二次根式教案 篇4

      【1】二次根式的加減教案

      教材分析:

      本節(jié)內容出自九年級數學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

      學生分析:

      本節(jié)課的'內容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎差、自學能力差,因此要提供賞識性評價教學策略,給予個別關照、心理暗示以及適當的精神激勵,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學習任務。

      設計理念:

      新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的基礎上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉變?yōu)閷W生的自主性、探究性、合作性學習活動的設計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設置開放的、面向實際的、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。

      教學目標知識與技能目標:

      會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

      過程與方法目標:

      通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經歷由實際問題引入數學問題的過程,發(fā)展學生的抽象概括能力。

      情感態(tài)度與價值觀:

      通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數學學習的過程中來,使他們體驗到成功的樂趣.

      重點、難點:重點:

      合并被開放數相同的同類二次根式,會進行簡單的二次根式的加減法。

      難點:

      二次根式加減法的實際應用。

      關鍵問題 :

      了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

      教學方法:.

      1. 引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結論,掌握規(guī)律。

      2. 類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。

      3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。

      【2】二次根式的加減教案

      教學目標:

      1.知識目標:二次根式的加減法運算

      2.能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。

      3.情感態(tài)度:培養(yǎng)學生善于思考,一絲不茍的科學精神。

      重難點分析:

      重點:能熟練進行二次根式的加減運算。

      難點:正確合并被開方數相同的二次根式,二次根式加減法的實際應用。

      教學關鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設問題激發(fā)學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數學上有不同的發(fā)展。

      運用教具:小黑板等。

      教學過程:

    問題與情景

    師生活動

    設計目的

    活動一:

    情景引入,導學展示

    1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點?

    2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的正方形木板?

    這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關注:學生是否能熟練得到正確答案。 教師傾聽學生的交流,指導學生探究。

    問:什么樣的二次根式能進行加減運算,運算到那一步為止。

    由此也可以看到二次根式的加減只有通過找出被開方數相同的二次根式的途徑,才能進行加減。

    加強新舊知識的聯(lián)系。通過觀察,初步認識同類二次根式。

    引出二次根式加減法則。

    3. A、B層同學自主學習15頁例1、例2、例3,C層同學至少完成例1、例2的`學習。

    例1.計算:

    (1) ;

    (2) - ;

    例2. 計算:

    1)

    2)

    例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

    活動二:分層練習,合作互助

    1.下列計算是否正確?為什么?

    (1)

    (2) ;

    (3) 。

    2.計算:

    (1) ;

    (2)

    (3)

    (4)

    3.(見課本16頁)

    補充:

    活動三:分層檢測,反饋小結

    教材17頁習題:

    A層、 B層:2、3.

    C層1、2.

    小結:

    這節(jié)課你學到了什么知識?你有什么收獲?

    作業(yè):課堂練習冊第5、6頁。

    自學的同時抽查部分同學在黑板上板書計算過程。抽2名C層同學在黑板上完成例1板書過程,學生在計算時若出現(xiàn)錯誤,抽2名B層同學訂正。抽2名B層同學在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名A層同學訂正。抽1名A層同學在黑板上完成例3板書過程,并做適當的分析講解。

    此題是聯(lián)系實際的題目,需要學生先列式,再計算。并將結果精確到0.1 m, 學生考慮問題要全面,不能漏掉任何一段鋼材。

    老師提示:

    1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。

    A層同學完成16頁練習1、2、3;B層同學完成練習1、2,可選做第3題;C層同學盡量完成練習1、2。多數同學完成后,讓學生在小組內互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名C層同學口答練習1;抽4名B層或C層同學在黑板上板書練習第2題;抽1名A層或B層同學在黑板上板書練習第3題后再分析講解。

    點撥:1)對 的化簡是否正確;2)當根式中出現(xiàn)小數、分數、字母時,是否能正確處理;

    3)運算法則的運用是否正確

    先測試,再小組內互批,查找問題。學生反思本節(jié)課學到的知識,談自己的感受。

    小結時教師要關注:

    1)學生是否抓住本課的重點;

    2)對于常見錯誤的認識。

    把學習目標由高到低分為A、B、C三個層次,教學中做到分層要求。

    學生學習經歷由淺到深的過程,可以提高學生能力,同時有利于激發(fā)學生的探索知識的欲望。

    二次根式的加減運算融入實際問題中去,提高了學生的學習興趣和對數學知識的應用意識和能力。

    小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關、合作互助的目的。

    培養(yǎng)學生的計算的準確性,以培養(yǎng)學生科學的精神。

    對課堂的問題及時反饋,使學生熟練掌握新知識。

    每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。

    二次根式教案 篇5

      第十六章 二次根式

      代數式用運算符號把數和表示數的字母連接起來的式子叫代數式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數字或單個的字母也是代數式

      5.5(解析:這類題保證被開方數是最小的完全平方數即可得出結論.20=22×5,所以正整數的最小值為5.)

      6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

      7.解:(1) . (2)寬:3 ;長:5 .

      8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

      9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

      10.解析:在利用=|a|=化簡二次根式時,當根號內的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

      解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應是 =-a.

      本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.

      在探究二次根式的性質時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.

      在探究完成二次根式的性質1后,總結學習方法,再放手讓學生自主探究二次根式的性質2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.

      練習(教材第4頁)

      1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

      2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

      習題16.1(教材第5頁)

      1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

      2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

      3.解:(1)設圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數,所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

      4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

      5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

      6.解:設AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

      7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數,都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數,都有意義. (3)∵即x>0,∴當x>0時, 在實數范圍內有意義. (4)∵即x>-1,∴當x>-1時,在實數范圍內有意義.

      8.解:設h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

      9.解:(1)由題意知18-n≥0且為整數,則n≤18,n為自然數且為整數,∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數,n為正整數,∴符合條件的n的最小值是6.

      10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.

      如圖所示,根據實數a,b在數軸上的位置,化簡:+.

      〔解析〕 根據數軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

      解:由數軸可得:a+b<0,a-b>0,

      ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

      [解題策略] 結合數軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數形結合的思想.

      已知a,b,c為三角形的三條邊,則+= .

      〔解析〕 根據三角形三邊的關系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

      [解題策略] 此類化簡問題要特別注意符號問題.

      化簡:.

      〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

      解:當x≥3時,=|x-3|=x-3;

      當x<3時,=|x-3|=-(x-3)=3-x.

      [解題策略] 化簡時,先將它化成|a|,再根據絕對值的意義分情況進行討論.

      5

      O

      M

    二次根式教案 篇6

      一、內容和內容解析

      1.內容

      二次根式的除法法則及其逆用,最簡二次根式的概念。

      2.內容解析

      二次根式除法法則及商的算術平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學習了除法法則后,就有比較豐富的運算法則和公式依據,將一個二次根式化成最簡二次根式,是加減運算的基礎.

      基于以上分析,確定本節(jié)課的教學重點:二次根式的除法法則和商的算術平方根的性質,最簡二次根式.

      二、目標和目標解析

      1.教學目標

      (1)利用歸納類比的方法得出二次根式的除法法則和商的算術平方根的性質;

      (2)會進行簡單的二次根式的除法運算;

      (3) 理解最簡二次根式的概念.

      2.目標解析

      (1)學生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

      (2)學生能理解除法法則逆用的意義,結合二次根式的概念、性質、乘除法法則,對簡單的二次根式進行運算.

      (3)通過觀察二次根式的運算結果,理解最簡二次根式的特征,能將二次根式的運算結果化為最簡二次根式.

      三、教學問題診斷分析

      本節(jié)內容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質來進行,也可以先利用分式的性質,去掉分母中的根號,再結合乘法法則和積的.算術平方根的性質來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結果,明確運算方向.

      本節(jié)課的教學難點為:二次根式的除法法則與商的算術平方根的性質之間的關系和應用.

      四、教學過程設計

      1.復習提問,探究規(guī)律

      問題1 二次根式的乘法法則是什么內容?化簡二次根式的一般步驟怎樣?

      師生活動 學生回答。

      【設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則.

      五、目標檢測設計

    二次根式教案 篇7

      1.教學目標

      (1)經歷二次根式的乘法法則和積的算術平方根的性質的形成過程;會進行簡單的二次根式的乘法運算;

      (2)會用公式化簡二次根式.

      2.目標解析

      (1)學生能通過計算發(fā)現(xiàn)規(guī)律并對其進行一般化的推廣,得出乘法法則的內容;

      (2)學生能利用二次根式的乘法法則和積的算術平方根的性質,化簡二次根式.

      教學問題診斷分析

      本節(jié)課的學習中,學生在得出乘法法則和積的算術平方根的性質后,對于何時該選用何公式簡化運算感到困難.運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關,由于該內容與以前學過的實數內容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學中,要多從聯(lián)系性上下力氣.,培養(yǎng)學生良好的運算習慣.

      在教學時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數是分數或分式(包括小數),可以采用直接利用分式的性質,結合二次根式的性質進行化簡(例見教科書例6解法1),也可以先寫成算術平方根的商的形式,再利用分式的性質處理分母的'根號(例見教科書例6解法2);(2)如果被開方數不含分母,可以先將它分解因數或分解因式,然后吧開得盡方的因數或因式開出來,從而將式子化簡.

      本節(jié)課的教學難點為:二次根式的性質及乘法法則的正確應用和二次根式的化簡.

      教學過程設計

      1.復習引入,探究新知

      我們前面已經學習了二次根式的概念和性質,本節(jié)課開始我們要學習二次根式的乘除.本節(jié)課先學習二次根式的乘法.

      問題1 什么叫二次根式?二次根式有哪些性質?

      師生活動 學生回答。

      【設計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質.

      問題2 教材第6頁“探究”欄目,計算結果如何?有何規(guī)律?

      師生活動 學生計算、思考并嘗試歸納,引導學生用自己的語言描述乘法法則的內容.

      【設計意圖】學生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學生用數學語言和文字分別描述法則,以培養(yǎng)學生的符號意識.

      2.觀察比較,理解法則

      問題3 簡單的根式運算.

      師生活動 學生動手操作,教師檢驗.

      問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?

      師生活動 學生回答,給出正確答案后,教師給出積的算術平方根的性質.

      【設計意圖】讓學生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術平方根的性質,性質是為運算服務的,積的算術平方根的性質將積的算術平方根分解成幾個因數或因式的算術平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學生的運算能力.

      3.例題示范,學會應用

      例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

      師生活動 提問:你是怎么理解例(1)的?

      如果學生回答不完善,再追問:這個問題中,就直接將結果算成二次根式的乘除可以嗎?你認為本題怎樣才達到了化簡的效果?

      師生合作回答上述問題.對于根式運算的最后結果,一般被開方數中有開得盡方的因數或因式,應依據二次根式的性質二次根式的乘除將其移出根號外.

      再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

      【設計意圖】通過運算,培養(yǎng)學生的運算能力,明確二次根式化簡的方向.積的算術平方根的性質可以進行二次根式的化簡.

      例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

      師生活動 學生計算,教師檢驗.

      (1)在被開方數相乘的時候,就可以考慮因數或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

      (2)二次根式的乘法運算類似于整式的乘法運算,交換律、結合律都是適用的.對于根號外有系數的根式在相乘時,可以將系數先相乘作為積的系數,再對根式進行運算;

      (3)例(3)的運算是選學內容.讓學有余力的學生學到“根號下為字母的二次根式”的運算.本題先利用積的算術平方根的性質,得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

      【設計意圖】引導學生及時總結,強調利用運算律進行運算,利用乘法公式簡化運算.讓學生認識到,二次根式是一類特殊的實數,因此滿足實數的運算律,關于整式運算的公式和方法也適用.

      教材中雖然指明,如未特別說明,本章中所有的字母都表示正數,但仍應強調,看到根號就要注意被開方數的符號.可以根據二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題.

      4.鞏固概念,學以致用

      練習:教科書第7頁練習第1題. 第10頁習題16.2第1題.

      【設計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況.

      5.歸納小結,反思提高

      師生共同回顧本節(jié)課所學內容,并請學生回答以下問題:

      (1)你能說明二次根式的乘法法則是如何得出的嗎?

      (2)你能說明乘法法則逆用的意義嗎?

      (3)化簡二次根式的基本步驟是怎樣?一般對最后結果有何要求?

      6.布置作業(yè):教科書第7頁第2、3題.習題16.2第1,6題.

      五、目標檢測設計

      1.下列各式中,一定能成立的是( )

      A.二次根式的乘除 B.二次根式的乘除

      C.二次根式的乘除 D.二次根式的乘除

      【設計意圖】考查二次根式的概念和性質,這是進行二次根式的乘法運算的基礎.

      2.化簡二次根式的乘除 ______________________________。

      【設計意圖】二次根式是特殊的實數,實數的相關運算法則也適用于二次根式.

      3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結果是(  )

      A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

      【設計意圖】鞏固二次根式的性質,利用積的算術平方根的性質正確化簡二次根式.

    二次根式教案 篇8

      【 學習目標 】

      1、知識與技能:了解二次根式的概念,能求根號內字母范圍,理解二次根式的雙重非負性,并能應用它解決相關問題。

      2、過程與方法:進一步體會分類討論的數學思想。

      3、情感、態(tài)度與價值觀:通過小組合作學習,體驗在合作探索中學習數學的樂趣。

      【 學習重難點 】

      1、重點:準確理解二次根式的概念,并能進行簡單的計算。

      2、難點:準確理解二次根式的雙重非負性。

      【 學習內容 】課本第2— 3頁

      【 學習流程 】

      一、 課前準備(預習學案見附件1)

      學生在家中認真閱讀理解課本中相關內容的知識,并根據自己的理解完成預習學案。

      二、 課堂教學

      (一)合作學習階段。

      教師出示課堂教學目標及引導材料,各學習小組結合本節(jié)課學習目標,根據課堂引導材料中得內容,以小組合作的形式,組內交流、總結,并記錄合作學習中碰到的'問題。組內各成員根據課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。

      (二)集體講授階段。(15分鐘左右)

      1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。

      2. 教師對合作學習中存在的普遍的不能解決的問題進行集體講解。

      3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

      (三)當堂檢測階段

      為了及時了解本節(jié)課學生的學習效果,及對本節(jié)課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。

      (注:合作學習階段與集體講授階段可以根據授課內容進行適當調整次序或交叉進行)

      三、 課后作業(yè)(課后作業(yè)見附件2)

      教師發(fā)放根據本節(jié)課所學內容制定的針對性作業(yè),以幫助學生進一步鞏固提高課堂所學。

      四、板書設計

      課題:二次根式(1)

      二次根式概念 例題 例題

      二次根式性質

      反思:

    二次根式教案 篇9

      1.請同學們回憶(≥0,b≥0)是如何得到的?

      2.學生觀察下面的例子,并計算:

      由學生總結上面兩個式的關系得:

      類似地,請每個同學再舉一個例子,然后由這些特殊的例子,得出:

      (≥0,b0)

      使學生回憶起二次根式乘法的運算方法的推導過程.

      類似地,請每個同學再舉一個例子,

      請學生們思考為什么b的取值范圍變小了?

      與學生一起寫清解題過程,提醒他們被開方式一定要開盡.

      對比二次根式的乘法推導出除法的運算方法

      增強學生的自信心,并從一開始就使他們參與到推導過程中來.

      對學生進一步強化被開方數的取值范圍,以及分母不能為零.

      強化學生的解題格式一定要標準.

      教學過程設計

      問題與情境師生行為設計意圖

      活動二自我檢測

      活動三挑戰(zhàn)逆向思維

      把反過來,就得到

     。ā0,b0)

      利用它就可以進行二次根式的化簡.

      例2化簡:

      (1)

     。2)(b≥0).

      解:(1)(2)練習2化簡:

      (1)(2)活動四談談你的'收獲

      1.商的算術平方根的性質(注意公式成立的條件).

      2.會利用商的算術平方根的性質進行簡單的二次根式的化簡.

      找四名學生上黑板板演,其余學生在練習本上計算,然后再找學生指出不足.

      二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

      找學生口述解題過程,教師將過程寫在黑板上.

      請學生仿照例題自己解決這兩道小題,組長檢查本組的學習情況.

      請學生自己談收獲,并總結本節(jié)課的主要內容.

      為了更快地發(fā)現(xiàn)學生的錯誤之處,以便糾正.

      此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎理解并不難.

      讓學困生在自己做題時有一個參照.

      充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

    二次根式教案 篇10

      目 標

      1. 熟練地運用二次根式的性質化簡二次根式;

      2. 會運用二次根式解決簡單的實際問題;

      3. 進一步體驗二次根式及其運算的實際意義和應用價值。

      教學設想

      本節(jié)課的重點是:二次根式及其運算的實際應用;難點是:例7涉及多方面的知識和綜合運用,思路比較復雜。

      教 學 程序 與 策 略

      一、預習檢測

      1.解決節(jié)前問題:

      如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

      歸納:

      在日常生活和生產實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經常用到二次根式及其運算。

      二、合作交流:

      1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經過了多少路程(結果要求先化簡,再取近似值,精確到0.01米)

      讓學生有充分的時間閱讀問題,并結合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的.長是未知的?它們之間有什么關系?(2)列出的算式中有哪些運算?能化簡嗎?

      注意解題格式

      教 學 程 序 與 策 略

      三、鞏固練習:

      完成課本P17、1,組長檢查反饋;

      四、拓展提高:

      1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術作品鑲邊(紙條不重疊),如右圖,正方形美術作品的面積最大不能超過多少cm。

      師生共同分析解題思路,請學生寫出解題過程。

      五、課堂小結:

      1.談一談:本節(jié)課你有什么收獲?

      2.運用二次根式解決簡單的實際問題時應注意的的問題

      六、堂堂清

      1: 作業(yè)本(2)

      2:課本P17頁:第4、5題選做。

    【二次根式教案】相關文章:

    二次根式教案09-22

    有關二次根式教案三篇02-03

    實用的二次根式教案三篇04-11

    二次根式教案匯總九篇04-07

    二次根式教案合集7篇04-10

    二次根式教案常用【15篇】05-15

    二次根式教案匯總7篇04-04

    二次根式教案匯編六篇04-04

    二次根式教案范文10篇04-05

    二次根式教案匯編七篇04-14